

油圧機器に関連した材料分析技術

田村徹弥・中瀬拓也・櫻木研治

はじめに

油圧機器が意図した通りの機能を発揮するために は、部品を構成する材料の品質が適切でなければな らない.油圧機器の摺動部を例にとると、品質を満 足しない材料は疲労破壊、摩耗、かじり、腐食など 様々な形態の不具合を引き起こす原因になる.材料 起因の不具合は、眼で見ただけではわからない原因 が多く、ときには微視的な観点から材料の分析を行 う必要がある.

KYBでは一般的な材料試験(硬さ測定,触針式 粗さ測定,光学顕微鏡による組織観察など)に加え, 以下のような材料分析手法を用いている.

・走査電子顕微鏡法

(Scanning Electron Microscopy : SEM)

- ・エネルギー分散型X線分光法
- (Energy Dispersive X-ray Spectrometry: EDS) ・X線回折法
 - (X-Ray Diffraction : XRD)
- ・電子線後方散乱回折法
 - (Electron Backscatter Diffraction : EBSD)
- ・原子間力顕微鏡法
- (Atomic Force Microscopy : AFM)

他にも,有機分析(赤外分光分析や質量分析など) を行う場合もある.一般的な材料試験では材料の良 し悪しを評価するに留まるが,上記に挙げた材料分 析手法は,材料の微視的な性質を詳細に把握するこ とで不具合原因の推定ができる.さらに付け加える と技術開発の立場からも一歩進んだ材料特性の理解 が得られるため重要である.

油圧機器の摺動部には, 耐摩耗性や耐食性などの 機能を付与するために様々な表面処理・熱処理が施 され, それらの品質は製品機能を支えている. 表面 処理のうち, 当社で最も多く使用されるクロムめっ きは, 摺動部の耐摩耗性や耐腐食性を付与するが, 表面欠陥があると製品機能の損失につながる. 焼入 れなどの熱処理は主に鉄系材料の機械的性質を向上 させるが、組織異常があると疲労強度の低下などに つながる.また、油圧機器の油漏れを防止するオイ ルシールに対するコーティング表面の粗さの摩擦特 性への影響など、表面処理・熱処理に関する知見は 枚挙にいとまがなく、それらの品質確認に使用され る材料分析は重要な位置を占める.

本報では、上記に述べた代表的な分析事例を以降 に紹介する。

2 材料分析事例

2.1 クロムめっきの欠陥観察(SEM/EDS)

硬質クロムめっきは油圧シリンダやショックアブ ソーバのピストンロッドに成膜し,耐摩耗性や耐傷 付き性を向上させる.めっきにピットやピンホール などの表面欠陥があると,耐食性を悪化させる原因 となる.表面欠陥の原因は様々あるが,クロムめっ きの欠陥を分析した一例を紹介する.この事例では, SEMおよびEDSを用いた.SEMは電子線を用いて 表面を高倍率で観察する方法であり,EDSなどの検 出器を追加して元素分析を行うこともできる.目視 できない微視的な形状の違いや,それに含まれる成 分を検知することは,一般的な材料試験ではできな い.しかしながら,これらは製品品質を左右する重 要な要素であり,当社にとって不可欠な方法である.

図1はクロムめっき表面上の10μm程度の大きさの ピットをSEMにより観察した結果である.このよう な微視的な表面欠陥が生じる原因を探るため,観察 された欠陥の一部のめっき皮膜断面内部構造を調査 した.断面サンプル作製方法として,機械研磨では 観察したい欠陥部が研磨くずなどで汚染されてしま うため,清浄な断面が作製できる集束イオンビーム

(Focused Ion Beam: FIB) 加工やイオンエッチン グ法によるクロスセクションポリッシャ(CP) 加工 を行う. 図2は,約10µmの表面欠陥の直上よりCP 加工を行った断面SEM像である.表面上はわずかな 大きさに見られる欠陥も,内部では広く広がってい ることが確認できる.この腐食成分を確認するため, SEM/EDSを用いて分析した事例が図3となる.こ れは図2と同位置における元素マッピング像(クロム(Cr),鉄(Fe),酸素(O),塩素(Cl),それぞ れ検出率が高い部分を設定色別で明るく表示)であ る.母材成分であるFeとめっき成分であるCrが確 認されるほか,腐食とみられる箇所からは,Oと腐 食の要因となるClが特徴的に検出される.このよう に、微小領域の分析によって腐食過程を詳細に調べ ることができ、不具合の原因推定に役立っている.

図1 クロムめっき表面欠陥のSEM観察事例

図2 CP加工後の断面SEM像

図3 クロムめっき欠陥部の元素マッピング

2.2 ニッケルリンめっきの結晶構造解析 (XRD)

ニッケルリン (NiP) めっきは成膜後にベーキン グ (300℃前後の熱処理)を施すと,めっき皮膜の 結晶化により硬さが800~900HV程度に上昇する¹⁾. 熱処理条件が不適切であると,硬さの低下を招き不 具合につながる懸念がある.

NiPめっきの硬さ上昇メカニズムは、皮膜の結晶 構造に由来する.ここでは、NiPめっきの結晶構造 をXRDで解析した結果を紹介する.

XRDは, 試料に単色(特定の波長)のX線を照射 することで得られるX線の回折パターンから結晶構 造の情報を読み取る手法である.その応用により化 合物の同定のほか,残留応力の測定や試料の配向性, 結晶子サイズやひずみの推定など広く用いられる.

図4は異なるリン量のNiPめっきについて,熱処 理温度を変化させたサンプルのXRDスペクトルを 示す.

一般的に低リン量のめっき皮膜は、熱処理による Niの結晶化で硬さが上昇することが知られる.図4 (a)から実際に低リン量NiPめっきは、250℃以上で Niのピークが鋭くなっていることからNiの結晶化 が進んでいることが確認できる.

高リン量のめっき皮膜(図4(b))は、Ni₃Pの析出 が皮膜結晶構造の変化として表れており、高リン量 の場合、Ni₃Pの析出が硬さ上昇に寄与することが考 えられる。

以上からリン量がNiPめっき皮膜特性に影響する ことが確認された.

2.3 熱処理組織の結晶方位解析

高面圧接触する歯車(球状黒鉛鋳鉄)の歯面へ焼 入れを行ったところ,白色組織(図5および図6) が発生した.この材料は、本来、黒鉛周りも含め全 てパーライト基地となる.この白色組織を特定し、 有害なものであれば対策案を検討するため、EBSD を用いて詳細な組織調査を行った.

EBSDは、SEM中において試料に電子線を照射す ることで得られる結晶方位に基づいたパターンを取 得する.これにより、単一相内における結晶方位の 違いや、結晶構造の差異から複数の相の微視的な識 別が可能である.今回のような同じ鉄元素で構成さ れる結晶系の差異は、前述のEDSでは判別できない. このためEBSDによる判別が役立つ.

上記の白色組織を含む焼入れ層表層部をEBSDに より解析した結果を図7に示す.光学顕微鏡で観察 された球状黒鉛まわりの白色組織は、相分布図をみ るとオーステナイトとセメンタイトの混合組織であ るレデブライトと考えられる.セメンタイトは硬質 で脆性な組織であり、今回は歯車における接触面直 下に生成しているので、黒鉛とともに疲労強度を低 下させる欠陥として作用する懸念がある.

セメンタイトの低減に有効な策として焼入れ時の 温度を低下させることが考えられる.この理由とし て、レデブライト組織は加熱の際に黒鉛周辺の炭素 拡散により低融点化し溶融する.固溶限を超えた炭 素はセメンタイトとなり、その他の部分は残留オー ステナイトとして現れる²⁾.そのため、焼入れ温度 を低減させることで、黒鉛周りの炭素の拡散および 溶融を抑制し、結果としてセメンタイトの晶出を低 減できると考えられる.

図5 マクロ組織

図6 表面の白色組織(光学顕微鏡像)

図7 EBSDによる白色組織の相解析結果

2.4 ダイヤモンドライクカーボン皮膜のナノメート ルスケール粗さ測定

ダイヤモンドライクカーボン (Diamond-Like Carbon: DLC)皮膜³⁾は、非常に滑らかな皮膜であ るが、その表面にはナノメートルオーダの凹凸(以 下、ナノ粗さと称する)が存在する.ここでは、 DLC皮膜表面のナノ粗さをAFMを用いて観察した 事例を紹介する.

AFMは、一般的な触針式粗さ計よりも非常に高 分解能に三次元の表面プロフィールを測定すること ができる手法である.

図8に成膜方法の異なる各種DLC皮膜表面を AFMで観察した結果を示す.図中に三次元表面性 状のパラメータの一つである算術平均高さSa⁴⁾の値 を示す.一般的な粗さに比べると,非常に小さく, 金属を相手に摺動する場合,これが影響することは ほとんどない.しかし,摺動相手がオイルシール, ブッシュといった軟質材料の場合,この数十nmの粗 さが摩擦・摩耗特性を悪化させる原因となる.

DLC皮膜は、圧力、ガス流量、温度、バイアス 電圧等様々なパラメータを制御することで成膜を 行っている.これらのパラメータを変更することで、 DLC皮膜ナノ粗さの改善を実施した.図9に成膜 パラメータが異なる仕様のDLC皮膜のAFM像を示 す.成膜パラメータの変更によるナノ粗さの改善に より、仕様Cの皮膜においてSaが0.5nmという非常に 滑らかな粗さを実現することができた.各仕様の DLC皮膜を二輪車用フロントフォークインナー チューブに成膜し、オイルシールを往復摺動させた 平均摩擦力の速度特性を評価した(図10).皮膜ナ ノ粗さの改善により、摩擦特性の改善が図られてい ることが確認できる.

水素化アモルファスカーボン (a-C:H) テトラヘドラルアモルファスカーボン (ta-C)

図8 DLC皮膜の表面粗さ

3 おわりに

材料の性能や品質は肉眼での観察や一般的な材料 試験だけでは分からないことが多く,今回紹介した ような微視的な分析手法が不具合解析などに活用さ れている.

参考文献

- 来間清志、山田克美、佐藤馨,影近博:電析Ni-P合金めっ きの熱処理による皮膜構造変化と硬さとの関係、表面技 術, Vol. 42, No. 10 (1991) 1013-1018.
- 2) 辻川正人:レーザ技術の素形材分野への展開,素形材 Vol. 55, No. 4 (2014).
- 3) 大竹尚登, 平塚傑工, 齋藤秀俊: DLC膜の規格化につい て, トライボロジスト, Vol. 58, No. 8 (2013) 538-544.
- 4) 日本工業規格: JIS B 0681-2:2018

—— 著 者 —

田村 徹弥

1996年入社.技術本部基盤技術研 究所材料研究室主幹研究員.主に 表面処理に関する材料技術開発に 従事.

中瀬 拓也

2005年入社.技術本部基盤技術研 究所材料研究室.博士(工学). 主にトライボロジーに係る材料技 術開発に従事.

櫻木 研治

2011年入社.技術本部基盤技術研 究所材料研究室.主に金属材料の 表面処理・熱処理の技術開発に従事.