(技術解説)

水圧用容積式圧力変換装置に関する開発と応用*

Development and Application of Active Charge Accumulator for Water Hydraulics

吉田太志 YOSHIDA Futoshi

要 旨

水圧用容積式圧力変換装置(以下, ACA: Active Charge Accumulator)は、水道水を作動流体として、 ひとつの圧力源から複数の異なる圧力へ圧力調整弁 を用いずに増圧・減圧することが可能なシステムで ある. ACAのアプリケーションとして、 搬送や把 持等を主体とする基本の回路圧力が5MPa程度のシ ステムの中で例えば食肉加工におけるプレス、切断 等の特殊機能の駆動に10MPa程度を要するシステ ムを想定している.本報では、特にACAを用いた 増圧過程に着目した基本特性の実験と解析による比 較検証、及び実際の産業機械への応用を想定して ACAでシリンダを動作させる実験を行った結果を 報告する.更に、基本特性での実験と解析の結果か ら数式モデルの妥当性を示した. また, ACAから 増圧力を供給しながら、シリンダの伸縮の制御が可 能であることを示した.加えて、実験と解析結果の 比較から、増圧過程とシリンダ動作を制御する切換 弁の開閉タイミングがシリンダの伸縮回数に影響を 及ぼすことを明らかにした.

Abstract

The Active Charge Accumulator (ACA) enables fluid pressure conversion from a single pressure source into different pressure levels (upper/ lower) without using a pressure-regulating valve in a water hydraulic circuit which uses 'Tap water' as a working fluid. The ACA is assumed to be utilized in a system that requires approximately 10MPa pressure to drive several special machines and tools such as pressing and cutting for meat processing, among systems that require approximately 5MPa of basic circuit pressure mainly for conveying and holding functions. This study reports an experiment in which an ACA was used to drive a load cylinder, focusing on the basic properties of ACA pressure-boosting process, envisioning its application to real-world industrial machinery. An analytical model for predicting these properties and comparative verification have been proposed. Experimental and analytical results demonstrated the mathematical model's validity. It is also showed that extension and retraction strokes of the load cylinder can be controlled as the ACA supplies the boosting pressure. Comparison of our empirical and theoretical findings revealed that the cycle number of the load cylinder is influenced by the open/close timing of the directional control valves that govern the boosting process as well as by load-cylinder behavior.

^{*}The 10th JFPS International Symposium on Fluid Power, (FUKUOKA2017), 福岡(2017年10月) にて発表

諸言

作動流体に水道水を使った駆動技術は、従来の油 圧,空気圧,電気駆動に次ぐ,第4の新しい技術で ある.水圧技術は、液圧の特長である高出力、高速 制御を実現するとともに安心・安全・衛生という付 加価値をもつことから、医療・医薬、食品・飲料、 半導体製造分野での応用が期待されている. その将 来の展望として、水道水圧に相当する1MPa以下か ら高圧の14MPa程度までを視野に入れた市場展開 が進んでいくと言われている¹⁾. このような展望の もと、水圧技術が狙う市場で使用されている機器の 駆動方法として、油圧、空気圧、電気が混在してい る. これらの駆動力を液圧レベルに換算すると、高 圧から低圧まで幅広いことがわかる.液圧システム において圧力を調整するためには、一般的に圧力調 整弁が使われる.しかし、前述のように異なる液圧 レベルが混在するシステムでは、複数の圧力源を必 要とするため、装置の大型化や消費電力の増大、ま た減圧弁を用いることによるエネルギ損失の発生等 の課題がある. その解決策として一つの圧力源から の液圧を複数の異なる圧力に減圧・増圧することが 可能なActive Charge Accumulator (ACA) が提 案されている²⁾.

ACAに関する従来の研究としては、油圧用ACA を対象としており、これを用いてシリンダの位置制 御や力制御の制御性, ACAを用いない場合と比較 して消費電力の削減が可能であること等が明らかに されている^{3),4),5)}.一方.作動流体を油よりも粘性が 低い水にした場合、乏しい潤滑性を起因とするス ティックスリップ現象による振動の発生、油に比べ て体積弾性係数が高いことによるサージ圧の発生等 油圧とは異なる現象が水圧用ACAの性能を左右す ることが懸念される. そのため、ACAを水圧シス テムに応用することを念頭に、その減圧過程に着目 した基本特性に関して実験と解析による研究が行わ れている^{6),7)}. その結果として, ACAを水圧システ ムに適用するうえで特に重要だと考えられる負荷流 量.および配管等での圧力損失がACAの減圧過程 における動作特性に与える影響について報告されて いる $^{(0,7)}$.

本報では、増圧過程における基本特性を実験的に 明らかにするとともに、その特性を予測するための 数学モデルを構築し、解析結果と実験結果の比較か ら数学モデルの妥当性を検討する.更に、実際のア プリケーションを想定して、ACAによる水圧シリ ンダの動作実験を行い、その動作特性に関して解析 的考察を加える.

2 ACAによる増圧過程の動作原理

図1は本研究で対象とする二段式ACAの構造を模式的に示している。ACAの内部は、二段のピストンとシリンダにより圧力室A、B及びC(Chamber A, B, C)に区切られ、圧力室Cにはアキュムレータが接続されている。ACAのピストン変位 x_p は、ピストンが最下端にある状態を原点($x_p=0$)として鉛直上向きを正とした。

図2は、ACAの増圧過程の動作モードを説明して いる. (a)~(c)は、それぞれ充填、待機、放出のモード を示している.本システムは、2ポート2位置切換弁 V₁₁, V₁₃及びV₁₂(以下, 切換弁V₁₁, V₁₃, V₁₂)を介 して上流側から低圧部, 圧力変換部, 高圧部の三つの セクションを持つ. 低圧部はポンプから切換弁V₁₁, VL3までで、供給圧の調整弁、フィルタで構成される. 切換弁V_{L1}, V_{L3}はそれぞれ圧力室A, Bと導通する. 圧力変換部は切換弁V_{L1}, V_{L3}及びV_{L2}の間とし, 圧力 室Aは、切換弁V_{L1}とV_{L2}が導通している。圧力室Bは 切換弁V₁₄を介してタンクラインと導通している. 高圧 部は切換弁VLaから下流でアクチュエータの負荷抵抗 を模擬するためのニードル弁V_{L5}を取り付けた. 負荷 抵抗はニードル弁V15の開口量により調整した.表1 は増圧過程の動作を制御するための切換弁V」ー・V」の 開閉状態を示している.表2にACAの主な諸元を示す. 増圧過程の動作は、切換弁V₁₁~V₁₄の開閉タイミング、 高圧部の圧力 P_L とその閾値及びピストン変位 x_p の値に 基づいて制御される。充填モードでは、P₄≤Pminかつ $x_{P} \leq x_{Pmin}$ のときに切換弁 V_{L2} , V_{L4} を閉, V_{L1} , V_{L3} を開と して、低圧部から圧力室A、Bに水を充填する. ピス トン変位が*x_P=x_{Pmax}*になると切換弁V_{L1}, V_{L3}の両方が 閉じて待機モードとなる. 放出モードでは、先に切換 弁V₁₄を開くことで圧力P_Bが大気圧まで低下すると同 時に、圧力P」が圧力室Cに接続したアキュムレータの ガス圧P。に増圧比R_{TP}を乗じた圧力まで増圧される. その後、切換弁V12を開くことで、高圧部に増圧され

た水が放出される. $P_A \ge P_{\min}$ の間,切換弁 V_{L2} は開き続ける. 高圧部の圧力 P_L は,放出モード中は圧力 P_A と同じになる. その後, $P_A = P_{\min}$ になると切換弁 V_{L2} と V_{L4} が閉じて前述の充填モードに戻る. これらの3つのモードが自動制御により断続的に繰返される. 高圧部の圧力 P_L は,負荷絞りの通過流量と切換弁 $V_{L1} \sim V_{L4}$ の開閉タイミングに依存する.

以上の動作原理からわかるようにACAは容積式の 流体機器のため、ピストン変位量に制限があり、適当

図2 増圧過程の動作原理

表1 増圧過程の切換弁動作条件

モード	V_{L1}	V_{L2}	V_{L3}	V_{L4}
充填	開	閉	開	閉
待機	閉	閉	閉	閉
放出	閉	開	閉	開

表2 ACAの主な仕様

項	仕様	
	ピストン径	250mm
シリンダ	ロッド径	150mm
	ストローク	100mm
理論增圧比R _{TP}	2.78	
圧力室Cに接続したアキ	20L	

な周期で水の充填と放出が行われる.この理由により, 実際のアプリケーションとしては、間欠運転で一時的 な増圧を必要とするプレス機や切断機等が対象となる.

3 ACAを用いたシリンダ制御への応用

図3にACAを用いたシリンダ制御実験の水圧回 路図を示す.表3にシリンダの主な諸元を示す.シ リンダのピストン側の圧力室は、切換弁 V_{L2} と V_{C2} を 介してACAの圧力室A、切換弁 V_{C4} を介してタンク ラインにつながる.シリンダのロッド側の圧力室は、 切換弁 V_{C1} を介してポンプラインと、切換弁 V_{C3} がタ ンクへつながっている.この回路構成により、シリ

図3 ACAを用いたシリンダ制御

ンダの伸び動作にはACAの増圧力, 縮み動作には ポンプ圧力が供給されるため, 増圧力を有効に使う ことができる. また, シリンダの動作切換は手動ス イッチにより行った.

前述のとおり、ACAは容積式の流体機器であり、 これを用いた増圧過程でシリンダを動作させる際に、 その伸縮回数はACAの圧力室Aの容積とシリンダ のピストン側の圧力室の容積とのバランスで決まる。 同時にアキュムレータのガス圧すなわち増圧力はこ れに伴うACAの圧力室Cの容積変化に依存する。表 2及び表3のACAとシリンダの仕様から伸縮可能 な回数を試算すると8回となる。

項目	仕様	
形式	片ロッドシリンダ	
ピストン径	40mm	
ロッド径	28mm	
ストローク	100mm	
定格圧力	14MPa	
推力 at 14MPa	17.6kN	

表3 シリンダの主な仕様

解析モデル

4.1 ACAを用いた増圧過程のモデル化

図4にACAの増圧過程における数式モデルのパ ラメータ定義図を示す.ここでは、負荷抵抗を固定 絞りとしたモデル化について説明する.モデル化は 以下の仮定のもとに行った.

(i)作動流体の密度,粘度及び体積弾性係数は一定 とする.

(ii)ACAの圧力室Cの作動水の圧縮性は無視する.(iii)ACAの各室間での漏れはない.

負荷流量Q_{out}は式(1)のオリフィス流れで表現する.

$$Q_{\text{out}} = sign\left(P_A - P_t\right) \cdot C_{V_{\text{out}}} \sqrt{\frac{2|P_A - P_t|}{\rho}} \tag{1}$$

ここで、 P_A は圧力変換部の圧力、 P_t はタンク圧、 C_{tout} はバルブフローファクタ(以下、Cv値)とする.

切換弁 V_{L5} と V_{L2} は圧力室Aからタンクの間に直列 に配置している.ここで、負荷抵抗を調整するニー ドル弁 V_{L5} は固定絞りではあるが、切換弁 V_{L2} が開く とここでの圧力損失が少ないため、負荷抵抗は V_{L5} のおける絞りの抵抗が支配的になる.従って、直列 に配置している V_{L5} と V_{L2} は、一つの切換弁が開閉し ていると仮定して等価的に一つのバルブと見なして モデル化した.

切換弁V_{L1}を通過する流量Q_{L1}は式(2)で表す.

$$Q_{L1} = sign\left(P_{S} - P_{A}\right) \cdot C_{L1} \sqrt{\frac{2|P_{S} - P_{A}|}{\rho}}$$
(2)

切換弁V_{L3}を通過する流量Q_{L3}は式(3)で表す.

$$Q_{L3} = sign (P_{s} - P_{b}) \cdot C_{L2} \sqrt{\frac{2|P_{s} - P_{b}|}{\rho}}$$
(3)

ここで、 P_B は圧力室Bの圧力、 C_{L3} は切換弁 V_{L3} の Cv値である.

切換弁V_{L4}を通過する流量Q_{L4}は式(4)で表す.

$$Q_{L4} = sign\left(P_B - P_t\right) \cdot C_{L4} \sqrt{\frac{2|P_B - P_t|}{\rho}} \tag{4}$$

ここで, *C*_{L4}は切換弁V_{L4}のCv値である. 圧力室Aの圧力*P*₄は式(5), (6)から算出する.

$$\dot{P}_{A} = \frac{K}{V_{A} + \Delta V_{A}} \left(Q_{\text{OUT}} - A_{A} \cdot \dot{x}_{P} \right)$$
(5)

ここで、V₄は圧力室A及び切換弁V_{L1}、V_{L2}を接続 する配管から分岐して圧力室Aに導通するまでの容 積である. ΔV₄はACAのピストン移動に伴う容積変 化である.

また, xは変位xに対する時間の1階微分である.

同様に, 圧力室Bの圧力P_Bは式(7), (8)から算出する.

$$\frac{dP_B}{dt} = \frac{K}{V_B + \Delta V_B} \left(Q_{L3} - A_B \cdot \dot{x} \right) \tag{7}$$

$$\Delta V_B = \int A_B \cdot \dot{x}_P \, dt \tag{8}$$

ここで、 V_B はACAの圧力室B及び切換弁 V_{L3} 、 V_{L4} を接続する配管から分岐して圧力室Bに導通するまでの容積である.

圧力室Cに満たされている水は非圧縮性と仮定すると P_c はアキュムレータのガス圧 P_s と同じとなる. 従って、 P_c は、気体の断熱変化に従うとして式(9)で表す.

$$P_{c} = (P_{gs} + P_{atm}) \left(\frac{V_{g}}{V_{gs} + \Delta V_{c}}\right)^{N} - P_{atm}$$
(9)

ここで、Nはポリトロープ指数(N=1.4)、P_g、V_g、 はアキュムレータの封入ガス圧及びガス容積である. アキュムレータの容積の変化量*4V*cは式(10)のように ピストン速度と圧力室Cの断面積で決まる.

$$\Delta V_C = \int A_C \cdot \dot{x}_P \, dt \tag{10}$$

ピストンの運動方程式は式(11)で表す.

 $M\ddot{x}_{P} = P_{A} \cdot A_{B} + P_{B} \cdot A_{B} - P_{C} \cdot A_{C} - F_{f}$ $\tag{11}$

ここで \ddot{x}_p は x_p に対する時間の2階微分, F_f はACA のシリンダの摩擦力である.

4.2 ACAを用いたシリンダ制御モデルへの拡張

ここでは、前述の数式モデルに対し、ACAの増 圧過程でシリンダを動作させるための数式モデルに ついて説明する.図5に示すようにシリンダのモデ ルを追加する.

 Q_{Cout} は圧力室Aからシリンダのピストン側の圧力 室に供給される流量である. Q_{Cout} によりシリンダの 伸び動作が行われる.従って,式(1)を式(12)のように 変更する.

$$Q_{Cout} = sign\left(P_L - P_{CA}\right) \cdot C_{CA} \sqrt{\frac{2|P_L - P_{CA}|}{\rho}}$$
(12)

ここで、 P_{CA} はシリンダピストン側の圧力、 C_{CA} は シリンダのピストン側の圧力室に流入する際の C_v 値である.

*Q*_{L5}はシリンダの縮み動作において, ポンプラインからシリンダのロッド側の圧力室に供給される流量であり,式(13)で表す.

$$Q_{\rm L5} = sign \left(P_{\rm S} - P_{\rm CB} \right) \cdot C_{\rm CB} \sqrt{\frac{2|P_{\rm S} - P_{\rm CB}|}{\rho}}$$
(13)

ここで、 P_{CB} はシリンダピストン側の圧力、 C_{CB} はシリンダのロッド側の圧力室に流入する際のCv値である.

*Q*_{L6}はシリンダのロッド側の圧力室からタンクラインに流れる流量であり、式(14)で表す.

$$Q_{L6} = sign\left(P_{CB} - P_{t}\right) \cdot C_{CBt} \sqrt{\frac{2|P_{CB} - P_{t}|}{\rho}}$$
(14)

ここで, *C*_{CBt}はシリンダのロッド側の圧力室から タンクラインに流出する際のCv値である.

同様にQ_{L7}はシリンダのピストン側の圧力室から

タンクラインに流れる流量であり、式(15)で表す.

$$Q_{L7} = sign\left(P_{CA} - P_{t}\right) \cdot C_{CAt} \sqrt{\frac{2|P_{CA} - P_{t}|}{\rho}}$$
(15)

ここで, *C*_{CAt}はシリンダのピストン側の圧力室か らタンクラインに流出する際のC_v値である.シリン ダのピストン側の圧力室の圧力*P*_{CA}は式(16)で表す. *ΔV*_{CA}はシリンダのピストンの移動に伴う容積変化で あり式(17)で表す.

$$\frac{dP_{CA}}{dt} = \frac{K}{V_{CA} + \Delta V_{CA}} \left(Q_{Cout} - Q_{L7} - A_{CA} \cdot \dot{x}_C \right)$$
(16)

$$\int V_{CA} = \int A_{CA} \cdot \dot{x}_C \, dt \tag{17}$$

シリンダのロッド側の圧力室の圧力*P_{cb}*は式(18)で 表す. *ΔV_{cb}*はシリンダのピストン移動に伴う容積変 化であり式(19)で表す.

$$\frac{dP_{CB}}{dt} = \frac{K}{V_{CB} - \Delta V_{CB}} \left(Q_{L5} - Q_{L6} + A_{CB} \cdot \dot{x}_C \right)$$
(18)

$$\Delta V_{CB} = \int A_{CB} \cdot \dot{x}_C \, dt \tag{19}$$

シリンダのピストンの運動方程式は式(20)で表す.

 $M_{c}\dot{x}_{c} = P_{CA} \cdot A_{CA} - P_{CB} \cdot A_{CB} - k_{c} \cdot (x_{c} - x_{c0}) - F_{fc}$ (20) x_{c0} はシリンダが伸び始めてからばねと接触する までの距離, F_{fc} はシリンダの摩擦力である. k_{c} は, ばね定数とし, ばねのたわみ量 40mm以上で 10kN 以上の推力を発生するような仕様を設定した. これ は, 食肉加工機械の一つであるフットカッタへの応 用を想定している.

図5 ACAを用いたシリンダ制御への拡張モデル

5 結果と考察

5.1 基本特性の検証

図6は、図3で示した固定負荷における増圧過程 の実験結果と解析結果の比較例である.図中、赤線 は解析結果、黒線は実験結果を示している.(a)~(c) は、それぞれ、ピストン変位*x_P*, 圧力室Aの圧力*P_A*, アキュムレータのガス圧*P_g*である.(a),(c)より、ピ ストン変位及びガス圧の波形は解析結果と実験結果 でほぼ一致している.(b)において、増圧力は、実験 結果で13.4MPa,解析結果で12.9MPaとなり、誤差 4%でほぼ一致している.充填モードから放出モー ドの切り替わり時は、同様に圧力室Aの圧力は実験 値で5.0MPa,解析値は5.3MPaとなり、ずれは6% 程度とおおよそ一致している.しかし、充填モード の間は,解析結果と実験結果に差異がある.放出モー ドから充填モードの切り替わりの時に、圧力室Aの 圧力は実験結果で2.9MPa,解析結果で4.4MPaであ り、40%程度のずれがある.この原因について以下 に説明する.

数式モデルでは圧力室Aに流入する流量は式(2)で 表しており、供給圧Psを一定としている.これに対 し、実験では、ポンプ回転数が一定、言い換えると 供給流量が一定となっているため、充填モードでは、 供給流量の不足により供給圧が低下していることが 考えられる.

以上の結果から実験と解析について、ACAの圧 力室A、ガス圧P_gの波形にずれが見られるが、ピス トン変位については解析結果と実験結果はほぼ一致、

圧力室Aの圧力については,放出モードの間では実 験結果と解析結果の誤差が4%程度であることから, 提案した数式モデルの妥当性が示された.

5.2 シリンダ制御の実験結果

図7にシリンダ制御の実験結果を示す. (a)~(d)は それぞれ, (a)ACAとシリンダのピストン変位 x_P , (b)シリンダ推力F, (c)圧力室A, Bの圧力 P_A , P_B 及び 切換弁 V_{L2} と V_{C2} の間の圧力 P_L , (d)アキュムレータガ ス圧 P_s と供給圧 P_s を示している.

(a)のシリンダのピストン変位x_cを見ると,待機モードから放出モードに切り替わった後,伸縮動作が始まっていることがわかる.この時,シリンダの伸び動作においてのみACAピストンが階段状に変化しているもわかる.また,(b)からは目標の10kN以上の推

図7 ACAを用いたシリンダ制御実験結果

 (a)ACA及びシリンダのピストン変位,
 (b)シリンダ推力,(c)圧力室A,B及び高圧部の圧力,
 (d)供給圧及びアキュムレータのガス圧

力が発生していることが確認できる.更に(c)より, 伸び動作において圧力室Aの増圧力P₄が階段状に減 少していることがわかる.(d)からは縮み動作時には 供給圧P₅がシリンダに供給されていることがわかる.

以上の結果から、ACAとシリンダを組合わせたシ ステムにおいて、シリンダの伸び動作ではACAの増 圧力、縮み動作ではポンプラインからの圧力の供給 でシリンダの伸縮動作が可能であることが示された.

次に、シリンダの伸縮回数に着目すると図7(a)か らその回数は4回であることがわかる。前述のとお りACAとシリンダの仕様から、その伸縮回数は8 回と試算しているが、実験結果とは異なっている。 この伸縮回数の差の原因について考察する。

①圧力室A, Bの圧力の影響

図7(c)よりシリンダの伸び動作の開始時に, 圧力 室Aの圧力が一時的に低下, 同時に圧力室Bの圧力

は上昇している. この原因として, 圧力室Bからタ ンクラインの間の切換弁V_{I4}における圧力損失が大 きいことが考えられる. この確認として切換弁V_{I4} のCv値を小さくした場合の解析結果を図8に示す. この結果からシリンダの伸び始めに圧力室Bの圧力 が上昇して, 同時に圧力室Aの圧力は下がっている ことから, 傾向としては実験結果と一致する. しか し, サイクル回数は8回と変化がなく, 他に原因が あると考えられる.

②切換弁の開閉タイミングの影響

図7(a)より、シリンダの4回の平均ストロークは 58.3mmであり、このときのACAのピストン変位量は 平均11.4mmである。それぞれの受圧面積を考慮する とシリンダが4回の伸び動作に要した流体の体積は、 290mm, 圧力室Aで減少した体積は810mmであり, そ の差520mmとなる. これは圧力室Aから流出する流 体がシリンダの伸び動作に使われずに減少している ことを意味する.図3に示すように、シリンダの伸 縮動作をするために4個の2ポート2位置切換弁で ブリッジ回路を構成している. 伸縮動作時において 切換弁V_{C2}, V_{C3}の開・閉及び切換弁V_{C1}, V_{C4}を閉・ 開のタイミングはすべて同時に行うことが理想であ る.しかし、実際にはソレノイドの励磁の遅れ、弁 構造の違い等を起因とする開閉動作の遅れが発生す る. これにより圧力室Aとタンクラインが一時的に 導通することで増圧力が逃げていることが考えられ る. この理由として、切換弁の開閉タイミングの影 響が考えられる.上記の現象を考慮したシミュレー ション結果を図9に示す.

伸び動作時において切換弁 V_{C2} , V_{C3} を開いてから V_{C1} , V_{C4} の閉じるタイミングを1秒遅らせることで シリンダの圧力室がタンクラインと導通する状況を 模擬している.この結果より、伸縮回数が実験結果 と同じ4回にまで減少することが確認できた.また、 ACAのピストン変位が、シリンダの伸び動作時に おいて約10mmずつ減少していることも模擬できおり、 実験結果と同じ傾向を示している.

以上の結果から、シリンダの伸縮回数は、切換弁 の開閉タイミングに影響を受けることが解析的に明 らかになった.

6 結言

ACAの増圧過程における基本特性の実験及び解 析的検証を行った.実際の産業機械への応用を視野 にACAとシリンダを組合わせたシステムを構築し, 実験及び解析結果の比較から,その動作特性につい て考察した.その結果,以下の知見を得た.

- 1. ACA の増圧過程の特性予測及びシリンダの動 作を考慮した数式モデルを構築し,実験と解析 の結果からその妥当性を確認した.
- 2. ACAから増圧力を供給しながらシリンダの伸

図9 切換弁の開閉遅れの影響 (a)ACA及びシリンダのピストン変位, (b)シリンダの推力,(c)圧力室A,B, (d)供給圧及びアキュムレータのガス圧

— 著 者 -

吉田 太志

1998年入社.技術本部生産技術研 究所主幹研究員.博士(工学). 基盤技術研究所,事業開発推進部 にて水圧技術開発を担当した後, 2019年より現職. 縮の制御が可能である.

3. シリンダを伸縮させる切換弁の開閉タイミング が伸縮回数に影響を及ぼしている可能性がある ことを解析により示した.

参考文献

- S. Miyakawa, New applications of water hydraulics (Aqua-Drive-System), Proc. SICFP'11 Int. Conf. on Fluid Power, vol. 2, no. 4, pp. 27-34 (2011).
- 2)北川 能,留 滄海,宮田貴之,佐藤裕作,芦 金石, アキュムレータおよびそれを用いた油圧源,特許第 5439135号(平成25年12月20日).
- 3) LU, J., LIU, C., KITAGAWA, A., SAITO, M., OSAKA, K., and OBA, K., Study on N-level Pressure Hybrid Power Supply Hydraulic Servo System with High Efficiency and High Response, 8th JFPS International Symposium on Fluid Power, 1A3-1, pp. 79-84 (2011).
- 4) Jinshi LU, Changhai LIU, Ato KITAGAWA, Study on Highly Efficient Valve-controlled Hydraulics Servo System Using Active Charge Accumulator (ACA), The 4th TIT-BIT Joint Workshop on Mechanical Engineering, pp. 121-127 (2012)
- 5) Y. Yoshizawa, J. Lu, C. Liu, A. Kitagawa, Improvement of hydraulic servo system efficiency using active charge accumulator for pressure convertor (in Japanese), in Proc. 13th SICE Symp. pp. 87-90 (2012)
- 6) Futoshi Yoshida, Shouichiro Iio, Kenji Ito, Ato Kitagawa, Experimental and Theoretical Analysis of Active Charge Accumulator for Water Hydraulics System, IEEE Access, Vol. 5, pp. 881-890 (2017)
- 7) Futoshi Yoshida, Kenji Ito, Shouichiro Iio, Ato Kitagawa, EFFECT OF PARAMETER ON CHARACTERISTICS OF ACTIVE CHARGE ACCUMULATOR FOR WATER HYDRAULIC SYSTEM, Proceedings of ASME-JSME-KSME Joint Fluids Engineering Conference, No. 11456, pp. 959-963 (2015)