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Control Technologies for In-Vehicle Electric Actuators

1	 Introduction

Compared with electric power steering (EPS) for pas-
senger vehicles, EPS for all-terrain and utility task vehi-
cles, particularly for off-road vehicles, is required to 
deliver more highly responsive steering assist and kick-
back control performance. To satisfy these performance 
requirements, it is a precondition that the EPS hardware 
(including the motor described later and its driving circuit, 
gear assembly, etc.) has been properly designed. In addi-
tion, it is necessary to maximize the hardware capabilities 
by using software (i.e., with a proper control methodol-
ogy). Specifically, the open-loop gain of the control 
system (a gain of the loop transfer function) must be set to 
a level as large as possible within the frequency ranges in 
which the steering assist and kickback control perfor-
mance are required. However, care must be exercised in 
setting the open-loop gain because just using a high open-
loop gain would reduce the gain and phase margins (here-
inafter "stability margin"), resulting in an unstable control 
system in some cases. As an approach to ensure a stability 
margin while using a high open-loop gain (hereinafter 
"stabilization"), a phase compensator Note 1) has been used. 
For stabilization using this approach, the phase compen-
sator is designed with a focus on the gain and phase 
information of the frequency characteristics of the loop 
transfer function of the control system (called a "non-
parametric model"). It is relatively easy to implement a 
phase compensator, but designers need to adjust design 
parameters through trial and error while carefully observ-
ing the frequency characteristics. This means that such 
designers need to have a certain level of experience and 

knack. As described later, the compensator is assumed to 
be redesigned in phases during the development stage. 
For higher efficiency in development, it is desirable to 
automate the compensator development processes, includ-
ing from design to implementation, to some extent. 
However, design tool automation can hardly be achieved 
by conventional approaches.

Note 1) �The compensator in a control system is a computing unit 
intended to generate control input to impart desirable 
characteristics to the system. A phase compensator is 
designed with a focus on the gain and phase of the loop 
transfer function of the control system. 

On the other hand, robust control theory, typified by the 
H∞ control theory, involves approaches that use the trans-
fer function and state equation of the controlled object 
(called a "parametric model") to design the compensator 
through inverse operation from the desirable characteris-
tics (target tracking and disturbance response) of the 
control system. In these approaches, the controlled object, 
the characteristics of the control system, and disturbances 
are represented by parametric models and the related 
various equations are solved to determine the compensa-
tor. This means that design tools can relatively easily be 
automated, delivering the benefit that compensators can 
be designed more efficiently. These design approaches 
may be effective to catch up with the rapid development 
specific to the all-terrain and utility task vehicles market. 

In general, compensators designed based on robust 
control theory tend to be more complicated (with higher 
degree) than phase compensators. However, in-vehicle 
microprocessors mounted with floating point units (FPUs) 
have been generally introduced in recent years to allow 
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control specifications of the actuator differ depending on 
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implementation of compensators of relatively high degree.
This report explains how to design steering assist and 

steering angle control compensators for EPS based on the 
parametrization of stabilizing compensators 3), which is 
one of the basic theories of robust control.

2	 EPS Systems

2.1 Components of EPS System
Fig. 1 shows the components of the EPS for all-terrain 

and utility task vehicles. 
The electromechanical brushless motor shown in the 

Figure (hereinafter "the power pack") is a brushless motor 
integrated with a controller (hereinafter "the motor") as 
the name implies. This component performs computations 
for all controls including steering assist control.

The torque angle sensor (TAS) is another component 
that detects the torque and angle of the steering wheel 
operated by the driver. The steering assist control uses 
torque values detected by the TAS as described later. The 
steering angle control uses angle values detected by the 
TAS to set the origin of the steering angle that is calcu-
lated from the motor rotation angle.

The gear assembly has a mechanism by which the 
torque generated by the motor is amplified by a worm 
reducer and this rotary motion is converted into a linear 
motion by a rack and pinion device. This component 
transfers the steering torque produced by the driver and 
the steering assist torque generated by the motor to the 
vehicle's wheels as a cornering force.

2.2 Block Diagram of EPS System
Fig. 2 is a block diagram of the EPS system.
The controller has three major functions; ① A monitor-

ing function to detect any abnormality of the CPU, driving 
circuit and sensors, and perform fail-safe processing, ② A 

communication function to communicate with the vehicle 
and other sub systems via a CAN network, and ③ Control 
functions including motor vector control, steering assist 
control, and steering angle control.

With a focus on the steering assist and steering angle 
controls, the next chapter describes how to design com-
pensators for these controls.

Fig. 2　Block diagram of EPS system
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3	 Overview of Compensator Design

3.1 Components of Control System
Fig. 3 shows an overview of the control system (the 

controlled object + compensator) with a focus on the 
steering assist control or steering angle control.

The control input to this control system is from motor 
current commands. The control output from the system is 
steering angle or torque values from the TAS (the steering 
angle is calculated from the motor rotation angle). The 
load torque is attributable to the driver's steering and 
kickback transferred to the motor via the gear assembly 
and the friction torque of the gear assembly. 

In the Figure, the area enclosed by the red broken line 
represents the controlled object, which is a mixed system 
of hardware and software. The former includes the motor, 
the driving circuit, the controller, and the gear assembly, 
and the latter is for motor vector control and steering 
angle computation.

Fig. 3　Overview of control system
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3.2 Compensator Design Policy
Within the controlled object shown in Fig. 3 in the pre-

vious section, the hardware including the driving circuit, 
motor, and gear assembly behaves electrically or mechan-
ically in real time. With these physical phenomena, the 
hardware constitutes a continuous time system. On the 
other hand, the software is a discrete time system Note 2) 
because vector control and steering angle computation are 

Electromechanical 
brushless motor (Power pack)

Gear assy

TAS (Torque Angle Sensor)

Fig. 1　�EPS components for all-terrain and utility task 
vehicles
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performed by digital computers. Therefore, the actual 
controlled object is a mixed system of continuous and 
discrete time systems. The control input to and output 
from the controlled object are updated or sampled at each 
of their own control frequencies. That is, the controlled 
object ranging from the control input to the control output 
can be represented by a discrete time model Note 3). The 
compensator can also be represented by a discrete time 
model because its computation is performed by digital 
computers.

Note 2) �A system whose behavior is defined with discrete time 
(hereinafter "sampling time").

Note 3) �A discrete time model is a difference equation or transfer 
function representation of the behavior of the controlled 
object under the control of a digital computer at a sam-
pling time or the behavior of a discrete time system.

Conventionally, the set of the controlled object and 
compensator has been considered as a continuous time 
system. In this approach, the compensator is designed 
according to continuous time and then discretized using, 
for example, a bilinear expression before implementation. 
This approach has the problem that design stability 
cannot be ensured in actual systems. One major factor is 
that a compensator that has been discretized with a bilin-
ear expression, for instance, cannot necessarily become a 
stabilizing compensator for the discrete time system (i.e., 
the stability margin for the discrete time system cannot 
be guaranteed) (Challenge ①). Another major factor 
relates to modeling error of the controlled object (discrep-
ancy between the model and the actual system). The 
system cannot be stable if the designed compensator was 
not a stabilizing compensator for the actual system in the 
first place (Challenge ②). To address Challenge ①, it is 
useful to represent the controlled object as a discrete time 
model and design the compensator according to the dis-
crete time system. For Challenge ②, it is effective to use 
the frequency response method or the method of identifi-
cation 4) using maximum-length sequence signals to 
determine a model for designing the compensator (here-
inafter a "compensator design model"). Then, we have 
decided to introduce the approach of representing the 
controlled object in a discrete time model and designing 
the compensator in a discrete time system. We also iden-
tify the system to be controlled upon completion of the 
hardware fabrication and design the compensator using 
the identified compensator design model. We use δ (delta) 
operator 5) as a discrete time operator representing the 
controlled object and compensator model. The δ operator 
can be expressed as δ = (z - 1)/Tc (where z is the z operator 
and Tc is control frequency). A major advantage of using 
the δ operator is that relatively high accuracy can be 
obtained with compensator computation with a low 
number of bits. For more information, see References 4), 5).
3.3 Block Diagram of Control System

The controlled object included in the control system 
shown in Fig. 3 can be approximately represented by a 

block diagram as shown in Fig. 4:

Fig. 4　�Block diagram of controlled object (continuous time 
system)
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P(s) in Fig. 4 is the continuous time model (transfer 
function) of the controlled object. k is an integer not less 
than 0 (zero) used to indicate the sampling time [ts(k) = 
kTc (k = 0, 1, ...)]. u(k) is the output from the compensator, 
namely, control input (motor current command). u(t) is 
u(k) held every "time" ts(k). y(k) is the control output that 
is y(t) sampled every "time" ts(k). Control output y(k) will 
be a TAS torque signal for steering assist control or a 
steering angle for steering angle control. d(t) is the distur-
bance attributable to the load torque shown in Fig. 3 and 
the rotation of the steering wheel operated by the driver. 
d0 is a constant. Gd(s) is the transfer function representing 
a disturbance generator. Note that u(t) and u(k) are signals 
that are different from y(t) and y(k) signals, but for conve-
nience these are not differentiated by symbols.

The block diagram of Fig. 4 may be represented by a 
discrete time system as shown in Fig. 5. P(δ) and Gd (δ) 
are transfer functions (discrete time models) obtained by 
zero-order holding and discretization P(s) and Gd (s) with 
a sampler, respectively. Note that P(s) and P(δ) are trans-
fer functions that are different from Gd (s) and Gd (δ) 
transfer functions, but for convenience these are also not 
differentiated by symbols.

Thus, the control system in Fig. 3 can be represented 
using the transfer function model P(δ) of the controlled 
object and the transfer function model C(δ) of the com-
pensator as shown in Fig. 6. In Fig. 6, r(k) is the target 
steering angle signal. r0 is a constant. Gr(δ) is the transfer 
function representing the target value signal generator. 
This report describes how to design a compensator C(δ) 
for the control system in Fig. 6. Note that C(δ) is assumed 
to be a two-degree-of-freedom controller as follows:

C(δ) = [Cr(δ)　Cy(δ)]� (1-1)
u(k) = Cr(δ)r(k)－Cy(δ)y(k)� (1-2)

Fig. 5　�Block diagram of controlled object (discrete time 
system)
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3.4 Compensator Design Flow
Fig. 7 shows the compensator design flow as a V-shaped 

process diagram. This section describes what to do in each 
of the design processes (the flow to the left in Fig. 7).

Fig. 7　V-shaped process of compensator design
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3.4.1 Requirement Specification
The following describes what to do in the Requirement 

Specification stage.
(1) Setting design specifications

For steering assist control, an assist map where motor 
current commands are mapped against TAS torque signals 
is used to set the assist torque. A higher assist torque 
means a larger open-loop gain. A major requirement for 
the design specifications is that the required assist torque 
can be generated stably (i.e., without issuing harmful 
vibration). In other words, the control system will remain 
stable even with the maximum assumed open-loop gain. 

For steering angle control, the steering angle will follow 
the target steering angle signal r(k) in Fig. 6. Major design 
specifications include, for example, delay time, rise time, 
setting time, overshoot, and steady-state deviation to r(k) 
that may change stepwise or in ramp rate.
(2) Modeling controlled object and disturbances

Controlled object models can roughly be divided into 
two types. One is a high-precision simulation model 6) that 
can estimate in relative detail the behavior of the actual 
system (hereinafter "the simulation model"). The other is 
a simplified model for designing compensators (the afore-
mentioned compensator design model). A compensator 
design model can be derived from a differential equation 
that has linearized and simplified the controlled object. A 

compensator design model can also be derived through 
identification of a system using the simulation model or 
actual machine. The identification of systems using an 
actual machine will be described later. The simulation 
model can be created and implemented mainly by using 
tools such as MATLAB®/Simulink® and SimulationX®. 

The disturbances that may be applied to the controlled 
object include; ① Rotation of the steering wheel operated 
by the driver (for steering assist control), ② Load torque 
due to kickback, and ③ Friction torque of the gear assem-
bly. For steering assist control, these disturbances can be 
represented by a transfer function model with an assump-
tion of steering frequency as described later. For steering 
angle control in turn, the disturbances should be repre-
sented by a step or ramp function model based on the 
assumption that, with the driver's hands off the steering 
wheel, the steering angle can follow the steering angle 
command without steady-state deviation under distur-
bances ② and ③. 
3.4.2 Basic Design

In the basic design stage, a compensator is designed 
using the compensator design model and the assumed 
disturbance model. The compensator can be expressed by 
a transfer function model C(δ) in this stage. The simula-
tion model and the designed compensator are used to 
carry out simulation and verify the adequateness of the 
compensator during this stage. The compensator design 
will be described in detail in Chapter 4.
3.4.3 Detailed Design

In the detailed design stage, the compensator designed 
in the basic design stage is developed into an implementa-
tion model to be contained in the controller as software. 
This stage should verify that the compensator C(δ) derived 
in the basic design stage is equivalent to the implementa-
tion model (i.e., identical inputs will produce the same 
output).
3.4.4 Automatic Code Generation

Embedded Coder® is used to automatically generate 
codes from the implementation model.

4	 Compensator Design

This chapter describes the details of the basic design of 
compensators for steering assist control and steering angle 
control. The compensator design for steering assist control 
is different from that for steering angle control in control 
output, design specifications, and disturbances. The two 
compensators can be applied with the same design 
approach.
4.1 �Basic Design of Steering Assist Control Com-

pensator
4.1.1 Deriving a Compensator Design Model

An EPS model is shown in Fig. 8:
The EPS shown in Fig. 8 is a single-pinion type. This 

model can also be applied to double-pinion or column 

Fig. 6　Block diagram of control system
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EPS. The symbols used in the figure indicate the follow-
ing:
θh	 : Rotation angle of steering wheel [rad]
θp	 : Rotation angle of pinion [rad]
im	 : Motor current [A], τm: Motor torque [N·m]
Kt	 : Motor torque constant [N·m/A]
KTB	: Spring constant of torsion bar [N·m/rad]
Rw	 : Reduction ratio of worm reducer
Ipe	 : Equivalent inertia moment of pinion shaft [kg·m2]
Cpe	 : �Equivalent viscous resistance coefficient of pinion 

shaft [N·m/(rad/s)]
Rp	 : Specific stroke of rack and pinion [m/rad]
Kr	 : Spring constant of rack load [N·m/rad]

The TAS torque signal can be expressed by the equation 
below:

τs＝KTB(θh－θp)� (2-1)
Assuming that im is equal to u (the actual current com-
pletely follows the motor current command) and that all 
the parts except the torsion bar are rigid bodies, the rotary 
motion of the pinion can be expressed by the differential 
equation below:

Ipe θ̈p＋Cpeθ̇p＝�RwKtim＋KTB(θh－θp) 
　－KrRp

2θp� (2-2)
where

im＝u
From Eqs. (2-1) and (2-2), the following state and 

output equations can be obtained:
ẋ＝AP x＋BPu＋EPθh� (2-3)
y＝CPx＋FPθh� (2-4)

where
　　　　　  : State variable, y = -τs: Control output
u: Control input (motor current command)

In Eqs. (2-3) and (2-4), if θh is 0, the state and output 
equations for the discrete time model can be expressed by 

the equations below:
δx(k)＝APδ   x(k)＋BPδu(k)� (3-1)
y(k)＝CPδ   x(k)� (3-2)

where

APz, BPz and CPz are a system/control matrix where Eq. 
(2-3) or (2-4) is discretized by the z operator each. These 
can be determined using the discretization method "zoh" 
using the MATLAB® function "c2dm". Eqs. (3-1) and 
(3-2) are called step invariant models 5) of Eqs. (2-3) and 
(2-4). When Eqs. (3-1) and (3-2) are selected for the com-
pensator design model, the transfer function P(δ) in Figs. 
5 and 6 can be expressed by the equation below:

� (3-3)

In the initial development stage where the detailed 
design of hardware has not been completed, Eqs. (3-1) to 
(3-3) should be used as compensator design models to 
design compensators. However, these models may need to 
be revised when specific hardware specifications are made 
available or when the hardware fabrication has been com-
pleted. With consideration given to these cases, the degree 
of the compensator design models (degree of the denomi-
nator polynomial dp (δ)) is assumed to be 'n' in the follow-
ing discussion. Then, the transfer function P(δ) is 
expressed by the equation below:

� (3-4)
4.1.2 Setting Disturbance Models

This section discusses disturbance models of degree l 
that can be expressed by the equations below:

d＝Gd(s)d0� (4-1)

� (4-2)

The state and output equations of Eq. (4-1) can be 
expressed by the equations below:

ẋ＝Ad   x＋Bd  d0� (4-3)
d＝Cd   x� (4-4)

where

x＝［θp   θp］Ṫ

AP＝ ，Kpe＝KTB＋Kr Rp
2

⎡
｜
｜
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｜
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⎦
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1
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0
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0
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Fig. 8　EPS model
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The state and output equations of the discrete time model 
of disturbances can be expressed by the equations below:

δx(k)＝Adδ   x(k)＋Bdδ  d0� (4-5)
d(k)＝Cdδ   x(k)� (4-6)

where

Adz, Bdz and Cdz are a system/control matrix where Eq. 
(4-3) or (4-4) is discretized by the z operator each. These 
can be determined using the discretization method "zoh" 
or "matched" (matched pole-zero model 5)) using the 
MATLAB® function "c2dm". Note that the matched pole-
zero model has the same poles as those of the step invari-
ant model.

From Eqs. (4-5) and (4-6), the transfer function Gd(δ) of 
the discrete time model of disturbances can be expressed 
by the equations below:

� (4-7)

Note that the numerator polynomial of the disturbance 
model nd(δ) will not be used for compensator design.
4.1.3 �Coprime Factorization of Compensator 

Design Model
To get ready for designing the compensator based on 

the parametrization of the stabilizing compensator, the 
compensator design model of Eq. (3-4) is expressed by 
the coprime factorization below. If the controlled object is 
a system with multiple inputs/outputs, the model needs to 
be expressed in right and left coprime factorizations. This 
controlled object is a system with single input/output, 
which means that the right coprime factorization is identi-
cal to the left coprime factorization. Therefore, this report 
simply uses the term "coprime factorization". 

P(δ)＝NP(δ)/DP(δ)� (5-1)

� (5-2)

� (5-3)
f(δ) is a stable polynomial and any given parameter that 
can be set by the designer. When f(δ) is said to be stable, 
this means that its root exists at the center of the complex 
plane -1/Tc within the circle of radius 1/Tc (see Fig. 9). 
How to set f(δ) will be described later.

4.1.4 Deriving a Compensator
For steering assist control, assume that the compensator 

Cr(δ) in Eqs. (1-1) and (1-2) is Cr(δ) = 0. In this case, the 
control system can be represented by Fig. 10:

The compensator Cy(δ) based on the parametrization of 
the stabilizing compensator can be expressed by the equa-
tions below:

Cy(δ)＝NC(δ)/DC(δ)� (6-1)
NC(δ)＝XP(δ)＋R(δ)DP(δ)� (6-2)
DC(δ)＝YP(δ)－R(δ)NP(δ)� (6-3)

� (6-4)

� (6-5)

g(δ) is a stable polynomial that is any given parameter to 
be set by the designer. R(δ) is a stable-proper transfer 
function (degree of numerator polynomial is equal to or 
less than degree of denominator polynomial) that is a free 
parameter to be selected by the designer. How to set these 
parameters will be described later.

Xp(δ) and Yp(δ) are solutions to Bezout equations.
XP(δ)NP(δ)＋YP(δ)DP(δ)＝１� (6-6)

Firstly, Xp(δ) and Yp(δ) should be derived. Multiplying 
both sides of Eq. (6-6) by h(δ) = f(δ)g(δ) yields an identi-
cal equation below:

nX(δ)nP(δ)＋nY(δ)dp(δ)＝h(δ)� (6-7)
where

h(δ)＝δ2n－1＋h2n－2δ2n－2＋…＋h1δ＋h0

When np(δ) and dp (δ) do not share a common divisor, 
nx(δ) and ny(δ) that satisfy Eq. (6-7) will be uniquely 
decided. Their coefficient can be determined using the 
equation below 5):

ΘT＝Ψ TE－1� (6-8)

Adδ＝（Adz－Il）/Tc, Il: l × l unit matrix
Bdδ＝Bdz/Tc, Cdδ＝Cdz

Adz＝e AdTc, Bdz＝∫0
Tc e AdTcdτ Bd

Gd（δ）＝Cdδ（δIl－Adδ）－1BPδ＝
nd（δ）
dd（δ）

＝ ndl－1δ
l－1＋…nd1δ＋nd0

δ1＋ddl－1δ
l－1＋…dd1δ＋dd0

NP（δ）＝ ＝nP（δ）
f（δ）

nPn－1δ
n－1＋…＋nP1δ＋nP0

δn＋fn－1δ
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DP（δ）＝ ＝dP（δ）
f（δ）
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δn＋fn－1δ
n－1＋…＋f1δ＋f0

Fig. 10　Block diagram of steering assist control system
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n－2＋…＋ɡ1δ＋ɡ0

YP（δ）＝ ＝nY（δ）
ɡ（δ）

nYn－1δ
n－1＋…＋nY1δ＋nY0

δn－1＋ɡn－2δ
n－2＋…＋ɡ1δ＋ɡ0

Fig. 9　Stable region of δ operator

δ plane
Imaginary 
axis

Real axis

Stable region
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where

Next is the process to derive R(δ). In Fig. 10, the control 
output y(k) in response to the disturbance d(k) can be 
expressed by the equation below:

y(k)＝S(δ)d(k)＝DC(δ)DP(δ)Gd(δ)d0� (7-1)
Gd(δ) may have unstable poles or a pole that can delay 

the attenuation of d(k) regardless of its stability. In order 
to minimize fluctuations of y(k) due to the effect of such 
poles as quickly as possible, the zero of Dc(δ) (the root of 
the numerator polynomial) must include the poles of 
Gd(δ). Therefore, it is necessary to select R(δ) so that the 
numerator polynomial of Dc(δ) includes the denominator 
polynomial dd(δ) of Gd(δ). Since the degree of the distur-
bance model of Eq. (4-7) is l, the degree of R(δ) is set to 
l-1. R(δ) is expressed by the equation below:

� (7-2)
where dR(δ) is a stable polynomial. How to set the polyno-
mial will be described later.

Developing Dc(δ) yields the equation below:

� (7-3)

The following identical equation should be set so that 
the numerator polynomial of Eq. (7-3) includes dd (δ):

dR(δ)f(δ)nY(δ)－ɡ(δ)nP(δ)nR(δ)
　　　　　　　　　＝dd(δ)q(δ)� (7-4)

Modifying Eq. (7-4) yields the equation below:
dd(δ)q(δ)＋w(δ)nR(δ)＝γ(δ)� (7-5)

where
w(δ)�＝ɡ(δ)nP(δ) 
＝δ2n－2＋w2n－3δ2n－3＋…＋w1δ＋w0

γ(δ)�＝dR(δ)f(δ)nY(δ) 
＝δ2n＋l－2＋γ2n＋l－3δ2n＋l－3＋…＋γ1δ＋γ0

q(δ)＝q2n－2δ2n－2＋q2n－3δ2n－3＋…＋q1δ＋q0

The coefficient of nR(δ) can be determined using the 
equation below:

ΘT＝Ψ TE－1� (7-6)

where

4.1.5 Example of Basic Design of Compensator
(1) Determining the compensator design model

When Ap, Bp, Cp, Ep, and Fp in Eqs. (2-3) and (2-4) are 
given their physical parameter values and then discretized, 
the transfer function of Eq. (3-3) will be:

� (8-1)

The δ operator and the coefficients of the numerator and 
denominator of Eq. (8-1) were made dimensionless with 
the inverse of the control period 1/Tc (hereinafter "the 
control frequency"). In other words, δ in the equation is δ 
= Tcδ. All figures appearing in the following examples 
indicate dimensionless transfer functions.

The poles and zeros of Eq. (8-1) are all within the stable 
region, implying a stable controlled object. Note that the 
zeros in Eq. (8-1) have been added through discretization. 

Next, the coprime factorization of Eq. (8-1) P(δ) = 
Np(δ) / Dp(δ) is set as follows:

� (8-2)

� (8-3)
1/f(δ) in Eqs. (8-2) and (8-3) is the matched pole-zero 
model of the following stable transfer function 1/f(s) that 
has been made dimensionless with the control frequency 
1/Tc:

1/f(s)＝1/(s2＋2ζf  ωf   s＋ωf
2)� (8-4)

where 0 < ωf, 0 < ζf

If 1/f(s) is stable, its matched pole-zero model 1/f(δ)is 
also stable. To allow the control system to deliver high 
responsivity, it is desirable to set ωf to a value as high as 
possible. ζf, which is the attenuation factor of the poles of 
the control system, should be set to 1 or more. For conve-
nience, these are set as follows:
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R（δ）＝ ＝nR（δ）
dR（δ）

nRl－1δ
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l－2＋…＋nR1δ＋nR0
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l－2＋…＋dR1δ＋dR0

DC（δ）＝YP（δ）－R（δ）NP（δ）＝ －nY（δ）
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＝ dR（δ）f（δ）nY（δ）－ɡ（δ）nP（δ）nR（δ）
dR（δ）f（δ）ɡ（δ）
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nP（δ）
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P（δ）＝ ＝nP（δ）
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nP1δ＋nP0

δ2＋dP1δ＋dP0

＝ 7.807×10－3（δ＋1.980）
δ2＋7.964×10－2δ＋2.163×10－2

NP（δ）＝ ＝nP（δ）
f（δ）

7.807×10－3（δ＋1.980）
（δ＋0.2583）2

DP（δ）＝ ＝dP（δ）
f（δ）

δ2＋7.964×10－2δ＋2.163×10－2

（δ＋0.2583）2
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	 (natural angular frequency 
decided by the equivalent stiffness and equivalent inertia 
moment of the pinion shaft multiplied by 2).

The solutions to Bezout equations Xp(δ) and Yp(δ) can 
be expressed in the equations below:

� (8-5)

� (8-6)

1/g(δ) in Eqs. (8-5) and (8-6) is the matched pole-zero 
model of the following stable transfer function 1/g(s) that 
has been made dimensionless with the control frequency 
1/Tc:

1/ɡ(s)＝1/(s＋ωɡ)� (8-7)

where 	  is used.

(2) Setting disturbance models
The disturbance model for the continuous time system 

is set as follows. The numerator polynomial nd(s) of the 
disturbance model is hereinafter omitted because it will 
not be used for compensator design.

� (9-1)

where ζd = 1. The following settings will be used accord-
ing to the steering assist torque level:

　　　　　　　  : Large steering assist torque
　　　　　　　  : Medium steering assist torque
　　　　　　　  : Small steering assist torque

In these settings, the step invariant or matched pole-zero 
model of the transfer function in Eq. (9-1) that has been 
made dimensionless with the control frequency 1/Tc can 
be expressed by the equation below:

� (9-2)
where ζd = 1. ωd is as follows:

ωd = 0.07198: Large steering assist torque
ωd = 0.1258: Medium steering assist torque
ωd = 0.2008: Small steering assist torque

(3) Deriving free parameter R(δ)
It is assumed that the pole dR(δ) of the free parameter is 

the same as g(δ) of Eqs. (8-5) and (8-6). Substituting Eqs. 
(8-2), (8-6), and (9-2) as well as dR(δ) = g(δ) = δ + 0.2583 
in Eq. (7-6) yields the following free parameter R(δ):

� (9-3)

where
nR1＝15.640
nR0＝2.429　　

: Large steering assist torque

nR1＝10.135
nR0＝1.888　　

: Medium steering assist torque

nR1＝3.747
nR0＝0.8549 　

: Small steering assist torque

(4) Frequency characteristics of control system
From the above, substituting Eqs. (8-2), (8-3), (8-5), 

(8-6), and (9-3) in Eqs. (6-1) to (6-3) yields Cy(δ) as 
follows:

　　: Large steering assist torque� (10-1)

　　: Medium steering assist torque� (10-2)

　　: Small steering assist torque� (10-3)

According to the equations above, the poles of Cy (δ) 
include the pole dd(δ) of the disturbance model in Eq. 
(9-2) for all the torque cases. Fig. 11 shows the poles and 
zeros of the compensator of Eqs. (10-1) to (10-3) plotted 
on a complex plane. The figure indicates that all the poles 
and zeros are within the stable region. Note that both the 
vertical and horizontal axes have been made dimension-
less with the control frequency 1/Tc.

Stable region (inside the circle)
Zero of controller
Pole of controller

Real axis × Tc

Im
ag

in
ar

y 
ax

is
 ×

 T
c

Fig. 11　Poles and zeros of compensator (basic design)

Next, the frequency characteristics of Cy(δ), Cy(δ)P(δ) 
(loop transfer function), and S(δ) are shown in Fig. 12. 
For plotting of the Bode diagrams in Fig. 12, Cy(δ), Cy(δ)
P(δ), and S(δ) have been converted into the form of the z 
operator and applied with the MATLAB® function 
"dbode". The horizontal axis of these diagrams has been 
made dimensionless with the control frequency 1/Tc. 
According to the diagrams, the gain of the compensator or 
loop transfer function depends on the steering assist 
torque level.

This design approach is not intended to design compen-
sators with a focus on the loop transfer function or stabil-
ity margin. Still, it should be noted that eventually the 

ζf＝1 ，ωf＝2 Kpe/Ipe

XP（δ）＝ ＝nX（δ）
ɡ（δ）

8.179δ＋0.2314
δ＋0.2583

YP（δ）＝ ＝nY（δ）
ɡ（δ）

δ＋0.6314
δ＋0.2583

ωɡ＝2 KTB/Ipe

Gd（s）＝ ＝nd（s）
dd（s）

nd（s）
s2＋2ζdωds＋ωd

2

ωd＝0.5 Kpe/Ipe

ωd＝0.9 Kpe/Ipe

ωd＝1.5 Kpe/Ipe

Gd（δ）＝ ＝ ＝nd（δ）
dd（δ） δ2＋2ζdωdδ＋ωd

2
nd（δ） nd（δ）

（δ＋ωd）2

R（δ）＝ ＝nR（δ）
dR（δ） δ＋0.2583

nR1δ＋nR0

Cy（δ）＝
23.819（δ＋0.121）（δ2＋0.2204δ＋2.358×10－2）

（δ＋0.8819）（δ＋0.07198）2

Cy（δ）＝
18.314（δ＋0.1513）（δ2＋0.2392δ＋2.031×10－2）

（δ＋0.8172）（δ＋0.1258）2

Cy（δ）＝
11.926（δ＋0.205）（δ＋0.1938）（δ＋0.07162）

（δ＋0.7172）（δ＋0.2008）2
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gain margin is not less than 10 dB and the phase margin 
not less than 40 degrees for all cases. 

S(δ), which is called the sensitivity function, is less 
likely to be affected by the parameter variations of the 
controlled object or disturbances with its smaller gain. 
The smaller gain means a smaller control output to the 
steering wheel rotation, in other words, a larger steering 
assist torque. The poles of S(δ) are the poles dcl(δ) of the 
closed-loop transfer function of the control system in Fig. 
10 and can be expressed by the equation below:

dcl(δ)＝｛    f(δ)｝2 ɡ(δ)dR(δ)＝(δ＋0.2583)6� (10-4)
That is, f(δ), g(δ) and dR(δ) that were set during design 
become the poles of the closed-loop transfer function. 
This implies that this design approach is to design a com-
pensator by setting the poles of the closed-loop transfer 
function (or poles of the control system).
4.2 �Basic Design of Steering Angle Control 

Compensator
4.2.1 Deriving a Compensator Design Model

Fig. 13 shows a model of EPS including the steering 
wheel. For steering angle control, the steering angle deter-
mined from the motor rotation angle must follow the 
target steering angle signal while suppressing vibration 
caused by the turn of the steering wheel. Therefore, the 
controlled object is the steering system including the 
rotary motion of the equivalent inertia moment of the 
steering wheel shaft. The figure uses symbols to indicate 
the following meaning. The other symbols not on the list 
below have the same meaning as those used in Fig. 8.

θm	 : Motor rotation angle [rad] (θm = RPθP)
Ih	 : �Equivalent inertia moment of steering wheel 

shaft [kg·m2]
Ch	�: �Equivalent viscous resistance coefficient of 

steering wheel shaft [N·m/(rad/s)]
τh	 : �Steering wheel input torque [N·m] (assume τh = 0 

with the driver's hands off the wheel)
The control output, namely, the steering angle signal  θ̂p 

can be determined using the equation below:
θ̂p＝θm/Rw� (11-1)

Assuming again that im is equal to u (the actual current 
completely follows the motor current command) and that 
all the parts except the torsion bar are rigid bodies, the 
rotary motion of the pinion can be expressed by the dif-
ferential equation below:

Ipeθ̈p＋Cpeθ̇p＝�RwKtim＋KTB(θh－θp) 
　－KrRp

2θp� (11-2)
where

im＝u

Dimensionless frequency f × Tc

Dimensionless frequency f × Tc
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Medium steering assist torque
Small steering assist torque
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(a) Frequency characteristics of compensator Cy(δ)
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(b) Frequency characteristics of loop transfer function Cy(δ)
P(δ)
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(c) Frequency characteristics of transfer function S(δ)

Fig. 12　�Frequency characteristics of steering assist control 
system

Fig. 13　Model of EPS including steering wheel
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The rotary motion of the wheel can be expressed by the 
equation below:

Ihθ̈h＋Chθ̇h＝－KTB(θh－θp)� (11-3)
From Eqs. (11-1) to (11-3), the following state and output 
equations can be obtained:

ẋ＝AP x＋BPu� (11-4)
y＝CP x� (11-5)

where

In Eqs. (11-4) and (11-5), the state and output equations 
for the discrete time model can be expressed by the equa-
tions below:

δx(k)＝APδ   x(k)＋BPδu(k)� (11-6)
y(k)＝CPδ   x(k)� (11-7)

where

When Eqs. (11-6) and (11-7) are selected as the compen-
sator design model, the transfer function P(δ) in Figs. 5 
and 6 can be expressed by the equation below:

� (11-8)

The setting of disturbance models and coprime factor-
ization of the compensator design model are omitted here 
as these are as described in sections 4.1.2 and 4.1.3. The 
following describes how to derive a compensator.
4.2.2 Setting a Target Value Signal Model

This section discusses the target value signal model of 
degree l represented by the equation below:

� (12)

Note that the numerator polynomial of the target value 
signal model nr(δ) will not be used for compensator 
design.
4.2.3 Deriving a Compensator

For steering angle control, assume that the compensator 
Cr(δ) of Eqs. (1-1) and (1-2) is Cr(δ) = Fc(δ) / Dc(δ) based 
on the parametrization 3) of the stabilizing compensator for 
the two-degree-of-freedom control system. Fc(δ) is a sta-

ble-proper transfer function (hereinafter a "pre-compen-
sator"). In this case, the control system can be represented 
by Fig. 14:

In the control system shown in Fig. 14, the transfer 
function Gry(δ) ranging from the target steering angle 
signal r(k) to the control output y (hereinafter "target 
tracking characteristics") can be expressed by the equa-
tion below:

Gry(δ)＝FC(δ)NP(δ)� (13-1)
Then, Gry (δ) is set as follows:

� (13-2)
where dM (δ) is a stable polynomial. 

Next, the deviation er(k) of the output yr(k) of Gry(δ) 
from r(k) can be expressed by the equation below:

� (13-3)

dM(δ) 's degree m may be any number, but needs to be set 
from the following perspectives:
①� �If the compensator design model has an unstable 

zero, in other words, if np(δ) or dr(δ) has an unstable 
root, nM(δ) must include the root. 

②� �In order for the deviation er(k) to converge to zero 
(0) asymptotically, {dM(δ) - nM(δ)} in Eq. (13-3) must 
have the unstable pole of Gr(δ) as its root.

Then, assuming that np(δ) has an unstable root, an identi-
cal equation shown below is set so that {dM (δ) - nM(δ)} in 
Eq. (13-3) has the pole dr(δ) of Eq. (12) as a divisor:

dM(δ)－nP(δ)βM(δ)＝dr(δ)αM(δ)� (13-4)
where

nM(δ)＝nP(δ)βM(δ)� (13-5)
αM(δ) and βM(δ) are polynomials of degree n-1 and l-1, 
respectively. Degree of dM(δ) is m = n + l - 1. Modifying 
Eq. (13-4) gives the equation below:

nP(δ)βM(δ)＋dr(δ)αM(δ)＝dM(δ)� (13-6)
The coefficient of βM(δ) can be determined using the 
equation below:

ΘT＝Ψ TE－1� (13-7)
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APδ＝（APz－I4）/Tc, I4 : 4 × 4 unit matrix
BPδ＝BPz /Tc, CPδ＝CPz＝CP

APz＝e APTc, BPz＝∫0
Tc e APTcdτ BP

P（δ）＝CPδ（δI4－APδ）－1BPδ＝
nP（δ）
dP（δ）

＝ nP3δ
3＋nP2δ

2nP1δ＋nP0

δ4＋dP3δ
3＋dP2δ

2＋dP1δ＋dP0

Gr（δ）＝ ＝nr（δ）
dr（δ）

ndl－1δ
l－1＋…nd1δ＋nd0

δl＋ddl－1δ
l－1＋…dd1δ＋dd0

Fig. 14　Block diagram of steering angle control system

Gry（δ）＝
nM（δ）
dM（δ）

＝ nMm－1δ
m－1＋nMm－2δ

m－2＋…＋nM1δ＋nM0

δm＋dMm－1δ
m－1＋…＋dM1δ＋dM0

er（k）＝r（k）－yr（k）＝r（k）－Gry（δ）r（k）

＝｛1－Gry（δ）｝r（k）＝ r（k）dM（δ）－nM（δ）
dM（δ）

＝ Gr（δ）r0
dM（δ）－nM（δ）

dM（δ）



― 18 ―

Control Technologies for In-Vehicle Electric Actuators

where

How to set dM(δ) will be described later.
Substituting Eq. (13-2) in Eq. (13-1) and modifying it 

gives the equation below:

� (13-8)

Substituting the relation of Eq. (13-5) in Eq. (13-8) yields 
the equation below:

� (13-9)

Eq. (13-9) can be used to determine a pre-compensator 
Fc(δ).

A description of how to derive the compensator Cy(δ) is 
omitted here as it is the same as for steering assist control. 
The next section provides an example of basic design of 
the compensator.
4.2.4 Example of Basic Design of Compensator
(1) Determining a compensator design model

When Ap, Bp, Cp, Ep, and Fp in Eqs. (11-4) and (11-5) are 
input with their physical parameter values, discretized and 
made dimensionless with the control frequency 1/Tc, the 
transfer function of Eq. (11-8) is as follows:

� (14-1)

where
nP(δ)＝�3.406×10－5(δ＋1.980) 

　×(δ2＋8.741×10－3δ＋5.718×10－5)
dP(δ)＝�δ(δ＋1.233×10－2) 

　×(δ2＋7.599×10－2δ＋2.685×10－2)

Fig. 15 shows the poles and zeros of P(δ) in Eq. (14-1) 
plotted on a complex plane. With a focus on the numera-
tor of Eq. (14-1), there are three zeros. Of these, a real root 
is a zero that has been added through discretization. The 
remaining complex roots correspond to the original con-
tinuous time system. These complex roots are what make 
the resonance point (generally with a low attenuation 

factor), which is decided by the equivalent inertia moment 
of the steering wheel shaft and the  stiffness of the torsion 
bar, appear as an antiresonance point in the zeros of P(δ). 
Causing either compensator Cr(δ) or Cy(δ) to have these 
zeros as divisors in its poles could prevent the antireso-
nance point from appearing in the zeros of the transfer 
characteristics ranging from the target steering angle 
signal r(k) to the control output y(k). In this case, however, 
the antiresonance point inevitably appears as a pole of the 
transfer characteristics from r(k) to the wheel rotation 
angle to be a resonance point. So, if the target steering 
angle signal abruptly changes, vibration may occur as the 
steering wheel is turned. Then, the compensator should 
be so designed that the poles of the compensator cannot 
have the zeros of the compensator design model as their 
divisors. This can be achieved by determining the com-
pensator Fc(δ) using Eq. (13-9) and making settings so 
that the denominator polynomial f(δ) in Eqs. (5-2) and 
(5-3), the denominator polynomial g(δ) in Eqs. (6-4) and 
(6-5), and the denominator polynomial dR (δ) in Eq. (7-2) 
cannot have the zeros of the compensator design model as 
their divisors. 

Next is to set the coprime factorization P(δ) = Np(δ) / 
Dp(δ) in Eq. (14-1) as follows:

� (14-2)

� (14-3)

1/f(δ) in Eqs. (14-2) and (14-3) are the matched pole-zero 
model of the following stable transfer function 1/f(s) that 
has been made dimensionless with the control frequency 
1/Tc:

1/f(s)＝1/｛    f1(s)f2(s)｝� (14-4)

where
f1(s)＝s2＋2ζf  1ωf  1s＋ωf  1

2

f2(s)＝s2＋2ζf  2ωf  1s＋ωf  2
2

0＜ωf  1，0＜ωf  2，0＜ζf  1，0＜ζf2

ΘT＝［αM0  …  αMn－1  βM0  …  βMl－1］

：n ×（n＋l） matrix

ΨT＝［dM0  dM1  …  dMn＋l－2  1］
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…

…
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0
1
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0
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0
0
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…
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FC（δ）＝
f（δ）nM（δ）

nP（δ）dM（δ）

FC（δ）＝
f（δ）βM（δ）

dM（δ）

P（δ）＝ nP（δ）
dP（δ）

Stable region (inside the circle)
Zero of controlled object model
Pole of controlled object model
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original continuous time system
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discretization

Im
ag

in
ar

y 
ax

is
 ×

 T
c

Fig. 15　Poles and zeros of compensator design model

NP（δ）＝
nP（δ）
f（δ）

DP（δ）＝
dP（δ）
f（δ）
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where ζf1 = ζf2 = 2.3 and ωf1 = ωf2 = 0.7	 . 
Reducing ζf1 and ζf2 or raising ωf1 and ωf2 will tend to cause 
the controller to have unstable poles. So, these parameters 
are set to smaller values than for steering assist control.

The solutions to Bezout equations Xp(δ) and Yp(δ) can 
be expressed by the equations below:

� (14-5)

� (14-6)

where
nX(δ)＝�1910.8(δ＋0.4936) 

　×(δ2＋2.550×10－2δ＋1.781×10－4)
nY(δ)＝�(δ＋0.5236)(δ＋0.5953) 

　×(δ＋1.284×10－3)
ɡ(δ)＝�(δ＋2.364×10－2)(δ＋9.930×10－2) 

　×(δ＋0.3669)
1/g(δ) is the matched pole-zero model of the following 

stable transfer function 1/g(s) that has been made dimen-
sionless with the control frequency 1/Tc:

1/ɡ(s)＝1/｛ ɡ1(s)ɡ2(s)｝� (14-7)
where

ɡ1(s)＝s＋ωɡ1

ɡ2(s)＝s2＋2ζɡ2ωɡ1s＋ωɡ2
2

where  	 .

(2) Setting target value signal models
To ensure that the control output tracking to the target 

steering angle signal, which changes in ramp rate, con-
verges to zero (0) asymptotically, a target value signal 
model is set as follows:

� (15)

(3) Setting disturbance models
To ensure that the control output tracking disturbances, 

which change in ramp rate, converges to zero (0) asymp-
totically, a disturbance model for the continuous time 
system is set as follows:

� (16-1)

A step invariant model or matched pole-zero model of the 
transfer function of Eq. (16-1) that has been made into a 
dimensionless transfer function with the control frequency 
1/Tc can be expressed by the equation below:

� (16-2)

(4) Deriving free parameter R(δ)
It is assumed that the pole dR(δ) of the free parameter is 

dR(δ) = δ + 9.930 × 10-2, which is the same as one of the 
divisors of g(δ) in Eqs. (14-5) and (14-6). Substituting 
Eqs. (14-2), (14-6) and (15-2) as well as dR(δ) in Eq. (7-6) 
gives the following free parameter R(δ):

� (16-3)

(5) Deriving compensator Fc(δ)
The target tracking characteristics are set as follows:

� (16-4)

where
nM(δ)＝�1.601×10－3(δ＋8.925×10－3) 

　×(δ＋1.980)(δ2＋8.741δ＋5718)
dM(δ)＝(δ＋4.383×10－2)5

1/dM (δ) in Eq. (16-4) is the matched pole-zero model of 
the following stable transfer function 1/ dM(s) that has 
been made dimensionless with the control frequency 1/Tc:

1/dM(s)＝1/｛dM1(s)dM2(s)dM3(s)｝� (16-5)
where

dM1(s)＝s＋ωM 1

dM2(s)＝s2＋2ζM 2ωM 1s＋ωM 2
2

dM3(s)＝s2＋2ζM 3ωM 3s＋ωM 3
2

0＜ωM 1，0＜ωM 2，0＜ωM 3，0＜ζM 2，0＜ζM 3

where ζM2 = ζM3 = 1 and ωM1 = ωM2 = ωM3 = 0.3 x 	 . 
βM(δ) in Eq. (16-4) has been determined by substituting 
np(δ) of Eq. (14-1), dr(δ) of Eq. (15), and dM(δ) of Eq. 
(17-2) in Eq. (13-7).

When f(δ) of Eqs. (14-2) and (14-3) and βM(δ) and dM (δ) 
of Eq. (16-4) are substituted in Eq. (13-9), the compensa-
tor Fc(δ) can be expressed by the equation below:

� (16-6)

where
nF(δ)＝�46.993(δ＋8.925×10－3) 

　×(δ＋2.364×10－2)2(δ＋0.3669)2

dF(δ)＝(δ＋4.383×10－2)5

(6) Frequency characteristics of control system
From the above, substituting Eqs. (14-2), (14-3), (14-5), 

(14-6), and (16-3) in Eqs. (6-1) to (6-3) yields Cy(δ) as 
follows:

Cy(δ)＝NC(δ)/DC(δ)� (17-1)
where

� (17-2)

� (17-3)

nNC(δ)＝�8500.8(δ＋1.381×10－2) 
　×(δ2＋0.2211×10－2δ＋1.974×10－4) 
　×(δ2＋0.2360δ＋6.286×10－2)

nDC(δ)＝�δ2(δ＋1.107) 
　×(δ2＋0.1766δ＋0.1137)

dC(δ)＝�(δ＋0.2364×10－2)2 
　×(δ＋0.9930×10－2)(δ＋0.3369)2

Next, the frequency characteristics of Cy(δ), Cy(δ)P(δ) 
(loop transfer function), S(δ), and Gyr(δ) are shown in Fig. 
16.

ζf 1＝ζf 2＝2.3，ωf 1＝ωf 2＝0.7 Kpe/Ipe

XP（δ）＝
nX（δ）
ɡ（δ）

YP（δ）＝
nY（δ）
ɡ（δ）

ζɡ2＝2.3，ωɡ1＝ωɡ2＝0.7 KTB/Ipe

Gr（δ）＝ ＝nr（δ）
dr（δ）

1
δ2

Gd（s）＝ ＝nd（s）
dd（s）

1
s2

Gd（δ）＝ ＝nd（δ）
dd（δ）

1
δ2

R（δ）＝ ＝nR（δ）
dR（δ）

6590δ－9.002
δ＋9.930×10－2

Gry（δ）＝ ＝nM（δ）
dM（δ）

nP（δ）βM（δ）
dM（δ）

ζM2＝ζM3＝1，ωM1＝ωM2＝ωM3＝0.3× Kpe/Ipe

FC（δ）＝
nF（δ）
dF（δ）

NC（δ）＝
nNC（δ）
dC（δ）

DC（δ）＝
nDC（δ）
dC（δ）
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As a result of the design, the blue solid line Cy(δ)P(δ) in 
diagram (a) shows a gain margin of 10 dB or more and a 
phase margin of 40 degrees or more. It is generally said 
that the desirable gain margin for a servo system is 10 dB 
or more and the desirable phase margin is 40 degrees or 
more. In the dimensionless frequency range below the 
frequency (bandwidth) at which Gry (δ) indicated by the 
green solid line shows a gain of approx. -3 dB in diagram 
(b), S(δ) indicated by the blue solid line shows low-fre-
quency cutoff characteristics of 60 dB/decade. The control 
system is thus expected to deliver robustness against dis-
turbances or fluctuations of the controlled object in the 
low-frequency range.
(7) Verifying the basic design

The steering angle control system in Fig. 14 was 
modeled on MATLAB®/Simulink® and subjected to simu-
lation by setting P(δ) of Eq. (14-1), Fc(δ) of Eq. (16-6), 
Nc(δ) and Dc(δ) of Eqs. (14-2) and (14-3), and Gr(δ) of Eq. 
(15), as well as parameters of the disturbance generator 
Gd(δ). Transfer Fcn of the Continuous library was used as 
a transfer function model. Setting the solver to a fixed step 

ode1 (Euler) and the fixed step size to one (1) allowed 
computation of a dimensionless discrete time system 
using the δ operator. Major parameters that were set for 
the simulation are shown in Table 1.

The results of the simulation are shown in Fig. 17. 
According to Fig. 17, the control output y(k) follows 
asymptotically to the target steering angle r(k) that 
changes in ramp rate until the sampling count k is 500. 
When a ramp disturbance d(k) is applied at k = 1000, the 
control output y(k) almost does not change and continues 
following the target steering angle r(k). No vibration can 
be found with the steering wheel angle θh (k) as well.

4.3 �Detailed Design and Implementation of 
Compensators

4.3.1 Detailed Design of Compensators
This section describes the detailed design of the com-

pensators. Fig. 18 shows a block diagram of a compensa-
tor implementation model. In Fig. 18, the six transfer 
functions represented by the aforementioned Transfer Fcn 
are collectively called a "function model" and the transfer 
function of such a function model implemented in an 
appropriate way is called an "implementation model" (the 
term "implement" here refers to expressing a transfer 
function using state and output equations). For the steer-
ing assist control compensator, the pre-compensator in the 
Figure is Fc(δ) = 0. In R(δ), its numerator polynomial 
parameters depend on the magnitude of the steering assist 
(assist gain), although a detailed description is omitted 
here. The area enclosed by the blue broken line in Fig. 18 
indicates a block with state variable estimation and feed-

Sampling count k

R
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s

Fig. 17　�Results of simulation of steering angle control 
system

Table 1　Major parameter settings for simulation

Parameter Settings/Description
Target steering angle signal 

source r0
1/500 (0 at k = 500)

Disturbance signal source d0 1/500 (applied at k = 1000)
Disturbance generator Gd(δ) = P(δ)/(δ)2

Solver Fixed step ode1 (Euler)
Fixed step size 1 (dimensionless time)

Dimensionless frequency f × Tc

Dimensionless frequency f × Tc

Gain margin of 
10 dB or more

Phase margin of 
40 deg or more
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(a) Frequency characteristics of Cy(δ), P(δ), and Cy(δ)P(δ)

Dimensionless frequency f × Tc

Dimensionless frequency f × Tc

Bandwidth of Gry(δ)60dB/decade
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(b) �Frequency characteristics of transfer functions S(δ) and 
Gry (δ)

Fig. 16　�Frequency characteristics of steering angle control 
system
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back functions and that enclosed by the red broken line is 
a block with disturbance estimation and feedback func-
tions. This implies that the parametrization of a stabilizing 
compensator can be basically applied with the same 
theory as for compensators using the state variable and 
disturbance estimation observer Note 4).

Note 4) �An instrument that uses a controlled object model to 
estimate its state variable and disturbances

Fig. 18　�Block diagram of compensator implementation 
model

Pre-compensator

Eq.(13-9) Stabilizing compensator Cy(δ)

Output limiterState variable estimation and feedback

Eq.(6-4)

Variable according to assist gain 
(for steering assist control)

Disturbance estimation and feedback

Eq.(5-2)

Eq.(6-5)

Eq.(5-3)

Eq.(7-2)

The following introduces an example of implementa-
tion of the pre-compensator Fc(δ). The transfer function of 
Eq. (13-9) can be expressed as follows:

FC(δ)＝nF(δ)/dF(δ)＋DF� (18-1)
where

nF(δ)＝nFn＋l－2δ n＋l－2＋…nF1δ＋nF0

dF(δ)＝δ n＋l－1＋dFn＋l－2δ n＋l－2＋…dF1δ＋dF0

DF: constant representing a feedthrough term of FC(δ)

A possible realization method for lower computation 
error may be balanced realization (calculation using the 
MATLAB® function "balreal" for instance). To reduce the 
computation complexity, we decided to select controllable 
canonical form (this calculation can also be achieved with 
the MATLAB® function "canon").

The controllable canonical form of Eq. (18-1) can be 
expressed by the equation below:

δxF(k)＝AFxF(k)＋BFr(k)� (18-2)
yF(k)＝CFxF(k)＋DFr(k)� (18-3)

where

Eq. (18-2) can be developed into the equation below:

� (18-4)
A compensator implementation model is created on 

MATLAB®/Simulink® in such a manner that computation 
is carried out in the order of Eq. (18-4) and Eq. (18-3). For 
higher model readability, the model creation should be 
conducted according to the modeling guideline in which 
the description rule was established based on MAAB Note 

5).7)

Note 5) �An acronym of MathWorks® Automotive Advisory 
Board. A guideline that specifies protocols for Math-
Works products including description rules.

Compensator computation by microprocessors uses the 
single precision floating-point format for memory saving. 
Therefore, control parameters (variables having a fixed 
value) in Eqs. (18-3) and (18-4) and state variables (whose 
value changes with time) are all defined with single preci-
sion floating-point variables in the implementation model 
stage.
4.3.2 �Verifying the Compensator Implementation 

Model
The function and implementation models consisting of 

the six transfer functions in Fig. 18 are each subject to a 
back-to-back test to verify that these models are equiva-
lent to each other.
4.3.3 Implementing Compensators

As described in section 3.3, Embedded Coder® is used 
to automatically generate a C code from the implementa-
tion model. The generated C code is checked for confor-
mance to the MISRA-C® Note 6) rules using a static analysis 
tool. Any nonconforming items are remedied 7). Verifica-
tion of the implementation results will be described in the 
next chapter.

Note 6) �Coding standards intended to ensure safe, portable, and 
reliable software (in C-language)

5	 Design Verification

This chapter provides an example of the results of veri-
fication of the compensator design for steering assist 
control according to the verification process.
5.1 Compensator Unit Evaluation

Software integrated with a designed compensator was 
implemented in the power pack. The power pack was then 
applied with sinusoidal signals as motor current com-
mands. From input and output signals of the compensator, 
the frequency characteristics of the compensator Cy(δ) 
were measured. The results are shown in Fig. 19.
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The measurement results closely match the functional 
model, verifying that the compensator has been imple-
mented as designed. Note that the results shown in Fig. 19 
are for another design different from the basic design 
described in 4.1.5 Example of Basic Design of Compen-
sator. 

5.2 �System Evaluation and Redesigning of Com-
pensators

The system shown in Fig. 8 was applied with sinusoidal 
waves as motor current commands to measure the fre-
quency characteristics of the controlled object. The fre-
quency characteristics of the controlled object are shown 
in Fig. 20. The figure plots the frequency characteristics of 
the compensator design model of Eq. (8-1) (hereinafter 
the "basic design model"), of the measurement results, 
and of a model identified from the measurement results.

The identified model was obtained by calculating the 
frequency response vector from the measurement data 
using the MATLAB® function "fft" and then determined 
with the MATLAB® function "invfreqz". Transfer func-
tion parameters determined with "invfreqz" are written in 
the z operator form. The obtained parameters were thus 
converted into the δ operator form. The identified model 
in Fig. 20 can be expressed by the equation below:

� (19-1)
where

nP(δ)＝�5.317×10－3(δ＋0.1864) 
　×(δ2－0.2701δ＋1.600)

dP(δ)＝�(δ2＋0.5513δ＋8.201×10－2) 
　×(δ2＋9.755×10－2δ＋2.135×10－2)

All the gains of the basic design model, measurements, 
and identified model decrease after around a dimension-
less frequency of 0.02 at nearly -40 dB/decade, showing 
relatively good agreement with each other. However, the 
phase of the measurements is much behind the basic 
design model after around a dimensionless frequency of 
0.03. Possible causes include a response delay of the 
actual current from the motor current command, the 
control computation time of the software, frictional torque 
and small rattling of the machinery, and deflection of the 
elements that were assumed to be rigid bodies, which 
were not taken into account in Eq. (8-1). 

Since the gain and phase of the measurements are in 
good agreement with those of the identified model, the 
controlled object can be approximately expressed in a 
transfer function of degree 4 as shown in Eq. (19-1).

In fact, the frequency characteristics of the actual con-
trolled object show a larger phase delay than that of the 
basic design model. This means that a compensator 
designed based on the basic design model may fail to keep 
the control system stable. Then, we have redesigned the 
compensator using the identified model of Eq. (19-1). The 
redesigned compensator can be expressed by the equation 
below:

� (19-2)
where
① For large steering assist torque:

nNC(δ)＝�22.847(δ＋8.494×10－2) 
　×(δ2＋0.5513δ＋8.201×10－2) 
　×(δ2＋0.1579δ＋1.889×10－2)

nDC(δ)＝�(δ＋0.1864)(δ＋3.666×10－2)2 
　×(δ2＋1.295δ＋0.7986)

② For middle steering assist torque:
nNC(δ)＝�18.246(δ＋0.1022) 

　×(δ2＋0.5513δ＋8.201×10－2) 
　×(δ2＋0.1646δ＋1.701×10－2)

nDC(δ)＝�(δ＋0.1864)(δ＋6.502×10－2)2 
　×(δ2＋1.262δ＋0.7211)

③ For small steering assist torque:
nNC(δ)＝�12.111(δ＋0.1336) 

　×(δ2＋0.1745δ＋1.250×10－2) 

Dimensionless frequency f × Tc

Dimensionless frequency f × Tc
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Fig. 19　�Example of results of unit evaluation of 
compensator Cy(δ)
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Fig. 20　Frequency characteristics of controlled object

P（δ）＝ ＝nP（δ）
dP（δ） δ4＋dP3δ

3＋dP2δ
2＋dP1δ＋dP0

nP3δ
3＋nP2δ

2＋nP1δ＋nP0

Cy（δ）＝
nNC（δ）
nDC（δ）
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　×(δ2＋0.5513δ＋8.201×10－2)
nDC(δ)＝�(δ＋0.1864)(δ＋0.1127)2 

　×(δ2＋1.200δ＋0.6005)

1/f(δ) in Eqs. (5-2) and (5-3) is the matched pole-zero 
model of the following stable transfer function 1/f(s) that 
has been made dimensionless with the control frequency 
1/Tc:

1/f(s)＝1/｛f1(s)f2(s)｝� (19-3)
where

f1(s)＝s2＋2ζf  1ωf  1s＋ωf  1
2

f2(s)＝s2＋2ζf  2ωf  1s＋ωf  2
2

0＜ωf  1，0＜ωf  2，0＜ζf  1，0＜ζf  2

where ζf1 = ζf2 = 1 and ωf1 = ωf2 = 2        	 . 1/g(δ) in 
Eqs. (6-4) and (6-5) is the matched pole-zero model of the 
following stable transfer function 1/g(s) that has been 
made dimensionless with the control frequency 1/Tc:

1/ɡ(s)＝1/｛ɡ1(s)ɡ2(s)｝� (19-4)
where

ɡ1(s)＝s＋ωɡ1，ɡ2(s)＝s2＋2ζɡ2ωɡ1s＋ωɡ2
2

where 	  .

Next, the parameter for the pole 1/dd(δ) of the distur-
bance model of Eq. (9-1) was set as follows:

　　　　　　　: Large steering assist torque

　　　　　　　: Medium steering assist torque

　　　　　　　: Small steering assist torque

In all these cases, ζd = 1.

Also, it is assumed that the pole of the free parameter R(δ) 
in Eq. (9-3) is the matched pole-zero model of 1/g1(s) 
stated above.

The frequency characteristics of the redesigned Cy(δ), 
Cy(δ)P(δ) (loop transfer function), and S(δ) are shown in 
Fig. 21. As a result, the gain margin is 5 dB or more and 
the phase margin is 30 degrees or more in all cases. It has 
been verified through system evaluation and actual vehicle 
evaluation that a stable control system has been obtained 
with the redesigned compensator, although a detailed 
description is omitted here.
5.3 Actual Vehicle Evaluation

In in-house actual vehicle evaluation, a vehicle of an 
existing model is used to mainly test stationary steering 
(steering of a stopped vehicle). The test driver should start 
to turn the steering wheel and then turn it back to check 
the effect of the steering assist. The driver should also 
check that they feel no vibration via the wheel. The tuning 
parameters include the parameters of Eqs. (19-3) and 
(19-4), the parameters of the pole of the disturbance model 
of Eq. (9-1), and the parameters of the poles of Eq. (9-3). 
In in-house actual vehicle evaluation, several compensa-
tor candidates of different designs should be prepared by 
modifying the tuning parameters stated above toward 
actual vehicle evaluation at customer sites.

In actual vehicle evaluation at customer sites, a driving 
test is carried out on a dedicated off-road test course, in 
addition to the stationary steering evaluation. During the 
driving test, particularly the driver's feeling of steering at 
the start of cornering and of kickback during driving 
straight ahead or cornering should be checked.

ζf 1＝ζf 2＝1，ωf 1＝ωf 2＝2 Kpe/Ipe

ζɡ2＝1，ωɡ1＝ωɡ2＝2 KTB/Ipe

ωd＝0.5 Kpe/Ipe

ωd＝0.9 Kpe/Ipe

ωd＝1.5 Kpe/Ipe

Fig. 21　�Frequency characteristics of redesigned steering 
assist control system 
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(a) Frequency characteristics of compensator Cy(δ)
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(b) Frequency characteristics of loop transfer function Cy(δ)
P(δ)
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(c) Frequency characteristics of transfer function S(δ)
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6	 Future Outlook

The approach explained in this report is just a compen-
sator design method applicable to existing EPS that is a 
little bit different from the traditional approach. The 
importance of electronically-controlled in-vehicle equip-
ment will rise as in-vehicle equipment automation and 
autonomous driving is further accelerated. As an in-vehi-
cle equipment manufacturer, KYB needs to develop 
various value-added products. In the course of the devel-
opment, not only electrical and machine element engi-
neers but also control technology engineers should play 
two major roles of:
①� �crystallizing and screening product ideas during the 

product planning stage to create new products, and;
② �developing a robust design to minimize uncertainty 

throughout the product lifecycle.
For role ①, just think about sensors, for instance. What 

are the minimum sensors that can deliver the functions 
and control performance required by the product (for cost 
reduction)? What physical amounts should be detected 
and controlled to satisfy the requirements (for higher 
added-value)? An effective means to solve these possible 
challenges is to identify controllability and observability 
of the system from the control technology perspective and 
to utilize the observer theory. For role ②, a parametric 
model involving uncertainty may be identified through 
simulation using a model with product quality (produc-
tion variations) and secular changes in quality taken into 
account or through their testing on an actual machine. 
Such a parametric model can be effectively used to design 
compensators, ensuring robust stability of the control 
system.

Based on the above, we would like to strengthen our 
product design and proposal capabilities.

7	 Concluding Remarks

Focusing on EPS for all-terrain and utility task vehicles, 
this report explains KYB's control technologies for in-
vehicle electric actuators by introducing some numeric 
examples. The basis of the technologies is a design 
approach based on parametrization of stabilizing compen-
sators, which has been developed into a discrete time 
system in the δ operator form. The various equations used 
for compensator calculation were converted into software 

programs with m-file Note 7). This allows automatic calcula-
tion of parameters for the function and implementation 
models of compensators just by setting the tuning param-
eters described in Section 5.3.

Note 7) �A text file that describes programs to be executed on 
MATLAB®

The control technologies explained in this report can be 
applied not only to electric actuators but also to electric 
pumps, hydraulic actuators, and other various electroni-
cally-controlled components.

Although compensators only make up a small propor-
tion of in-vehicle software-controlled components, they 
are an essential technology directly affecting security, 
safety, and comfort. We would like to continue contribut-
ing to the improvement of quality and added-value of 
KYB products with our system analysis and evaluation 
techniques, control technologies, and software technolo-
gies.

Finally, we would like to take this opportunity to sin-
cerely thank all those concerned who have extended guid-
ance and cooperation to us in implementing and evaluating 
these control technologies.
・��MATLAB®, Simulink®, Embedded Coder®, and MathWorks® 

are registered trademarks of The MathWorks, Inc.
・SimulationX® is a registered trademark of ESI ITI GmbH.
・�MISRA-C® is a registered trademark of The MISRA Consor-

tium Limited.
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