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1. Introduction
It is expected that abnormality diagnosis and 

prediction technologies will be developed for production 
equipment whose unexpected failure can significantly 
affect production schedules. Meanwhile, deep learning 
(DL) technologies have advanced rapidly in recent years 
and are expected to be applied to abnormality diagnosis 
and prediction for production equipment1).  Very 
important points of these technologies are the quality and 
quantity of data used to build a diagnostic model. In 
other words, sufficient data must be obtained for both 
normal and abnormal times. Furthermore, if the 
diff erences between the two sets of data are clear in terms 
of characteristics, it would be easier to identify 
abnormalities. In many cases, however, abnormalities 
occur infrequently and data for abnormal times are 
usually not available. This makes it diffi  cult to diagnose 
and predict equipment abnormalities. To solve this 
problem, it is necessary to choose an approach to 
artificially generate abnormality data by consulting the 
probability distribution of data for normal times or an 
unsupervised learning approach such as that based on an 
auto-encoder2). Our research group is also working on 
these approaches3),4). This paper presents examples of the 
application of these approaches and real examples of 
their application at production sites.

2.  Artificial Generation of Abnormality Data and 
Abnormality Detection by Multi-labeled Deep 
Learning Networks3)

This section introduces how to detect abnormalities in 
the operation of parts cleaning equipment. In the parts 
cleaning process, parts are cleaned by two or more 
operations. Here, with a focus on any changes in the 
operating time of the processes, the possibility of 
abnormality detection is discussed. In other words, if the 
time taken to complete a work process deviates from its 
standard, this indicates that there is a problem in the 

process that should be detected earlier. In this case, it 
would be suffi  cient to focus on the operating time of each 
process if the individual processes were completely 
independent of each other. However, in cases where a 
process aff ects its related processes, a more appropriate 
abnormality detection may be possible by using a 
structure that can consider the mutual relevance, rather 
than recognizing them as independent processes. A multi-
labeled deep neural network (ML-DNN) can then be 
applied3).

ML-DNN is a binary classification method for data 
from two or more output layers of a deep neural network 
(DNN). The configured ML-DNN receives the input of 
the operating time for two or more operations in the parts 
cleaning process and represents the possibility of an 
abnormality in each operation by binary data output 
(normal or abnormal). When considering the output for 
all the operations, this is a matter of binary classifi cation 
of multiple outputs to which ML-DNN can be applied. 
This allows us to detect which operation has the 
abnormality, while taking into account the mutual 
influence between the different operations in the parts 
cleaning process.

In this case, it is necessary to train the ML-DNN with 
a suffi  cient number of normal and abnormal data sets. In 
reality, abnormal data is diffi  cult to obtain, while normal 
data is available from the data collected during normal 
operation. To solve this problem, we have selected the 
approach of obtaining the data distribution in normal 
times, artificially setting values that deviate from the 
distribution as abnormal data, and training the ML-DNN 
based on these data.

Fig. 1 shows an example of probability distribution 
results obtained from a histogram of the time taken to 
complete an operation within the cleaning process. Since 
the histogram is not as simple as a probability 
distribution, it is necessary to build a probability 
distribution model. This time, however, we decided to 
use a normal distribution as the most convenient way. 
Assuming it is a normal distribution, we determine the 
mean μ and the standard deviation σ. Since the 
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probability of occurrence of data outside the range of μ 
±3σ is about 0.3%, it is assumed that data within the 
range of μ ±3σ are normal and data in the range between 
μ ±3σ and μ ±8σ are abnormal. This probability 
distribution is used to artificially generate abnormal data. 
The abnormal data is then used to train the ML-DNN. 
The data collected during normal operation is used as 
normal data for the ML-DNN.
　The data sets generated in this way were used to train 
the ML-DNN to build an abnormality detection system. 
As a result, we successfully confirmed that the ML-DNN 
can achieve a correct response rate of 99.6% for 
abnormality detection. On the other hand, a regular DNN 
showed a correct response rate of 98.2%. Therefore, the 
ML-DNN has proven its superiority3). We are considering 
applying a mixed Gaussian or other probability 
distribution model in the future. 

3. �Abnormality Detection Using Both Spectrum 
Chara�cteristics and Auto-Encoder4)

　This section presents an example of considering the 
detection of abnormalities in a high-pressure pump in 
parts cleaning equipment4). Since the pump may have 
pressure data that is significantly affected by its drive 
frequency, it is effective to adopt an approach based on 
the frequency spectrum obtained by Fourier transform. 
We then subjected the time series data to Fast Fourier 
Trans fo rm (FFT)  to  de te rmine  the  f requency 
characteristics and tried to detect abnormalities according 
to changes in the frequency spectrum. However, again, 
the problem is that it is not easy to obtain data during 
abnormal times. We then used an auto-encoder3) based 
method, which is a type of unsupervised learning.
　An auto-encoder  does  not  necessar i ly  need 
abnormality data. It is possible to train it only with 
normal time data to configure an abnormality identifier. 
Specifically, a network structure as shown in Fig. 2 can 
be set up to provide an X̂ output that reproduces the input 
by encoding and decoding. In this case, the distance in 
data values between the input and the output is set as a 
loss function and the auto-encoder is trained so that the 
loss function is minimal. If the auto-encoder can be 
properly trained using this method, the loss function will 

be a somewhat small value when normal time data is 
input. Next, a threshold is set using the low loss function 
as a guide. Now the auto-encoder can judge the situation 
as normal if the loss function obtained from the input 
data is lower than the threshold, or abnormal if it is 
higher than the threshold. We have adopted this idea to 
simultaneously configure the auto-encoder and set a 
threshold to configure an abnormality identifier.

　The input to the auto-encoder is the frequency 
spectrum data of 127 points obtained by FFT. The sum of 
the squares of the differences between the input and 
output of the auto-encoder is set as the loss function. On 
the other hand, the frequency spectrum data for abnormal 
times, which were required for the evaluation, were 
created artificially by processing part of the normal time 
data. In other words, the frequency spectrum data for 
abnormal times was created by increasing or decreasing 
some of the frequency spectrum values in the normal 
frequency spectrum data.
　The auto-encoder was configured using the procedure 
above and its performance was verified. The results are 
shown in Fig. 3. The grey graph (right scale) represents 
the frequency spectrum and the red graph (left scale) the 
abnormality detection rate. The horizontal axis indicates 
the scaled frequency. The abnormality detection rate for 
the entire frequency range in Fig3.  is approximately 
83%, which means that the auto-encoder can detect most 
abnormalities. However, the abnormality detection rate is 
locally poor at a frequency of about 0.8. Similar poor 
performance can also be seen around frequencies of 
approximately 1.5, 1.8, and 2.3. At these frequencies, the 
frequency spectrum of the normal time data has a larger 
amplitude, which may lead to the poor accuracy in 
detecting amplitude changes at these frequencies.
　This may be because at frequencies with a large 
amplitude, even the normal time data contained shifted 
frequency values as shown in Patterns 2 and 3 in Fig. 4, 
rather than converging to a single frequency value as 
shown in Pattern 1, making it difficult to detect changes 
in amplitude values for the spectrum in these frequency 
ranges. To solve this problem, it is appropriate to treat 
the different frequency spectrum patterns shown in Fig. 4 

Fig. 1　Histogram of operating time3)

Fig. 2　Auto-encoder2)
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as the same pattern. We therefore decided to add another 
abnormality identification function to the auto-encoder 
for the specific frequency ranges where the abnormality 
detection rate was low. 
　We then switched to the abnormality identification 
flow shown in Fig. 5. Here, if the auto-encoder produces 
a normal result, an additional judgement is performed to 
determine if there is a possibility of an abnormality in the 
frequency ranges with poor detection accuracy. A 
frequency bandwidth has been set for the poor accuracy 
frequency ranges to cover all neighboring frequency 
peaks even for Patterns 2 and 3 in Fig. 4. The sum of the 
power spectra in the bandwidth was used to determine 
the presence or absence of an abnormality. This 
procedure begins by determining the sum of the power 
spectra in the set bandwidth for the normal time data. 
The next step is to determine the distribution of the 
power spectral values using the histogram. Assuming a 
normal distribution, the mean μ and the standard 
deviation σ are determined. As in Chapter 2, a threshold 
value was set assuming that data values within the range 
of μ ±3σ are normal, based on which a discrimination 
between normal and abnormal would be made. This 
method was applied to each of the frequency ranges 
(including approximately 0.8, 1.5, 1.8, and 2.3 in Fig. 3) 
where the auto-encoder often made an incorrect 
judgement. In other words, once the auto-encoder judges 
a normal situation, another judgement takes place around 
the frequency of 0.8. If that is judged normal, another 
judgement is made in the frequency range around 1.5, 
and so on. The target frequency range was shifted 
sequentially in this way for discrimination purposes. The 
results of the performance check using the method above 
are shown in Fig. 6. Using the same data as in Fig. 3, the 
abnormality detection rate for the entire frequency range 
was improved from 83% in Fig. 3 to approximately 92%. 
Fig. 6 shows that the abnormality detection accuracy in 
the frequency ranges with poor detection rate in Fig. 3 
has also been improved.

4. Examples of Application at Production Sites
　A verification test was conducted to determine whether 
the abnormality detection system using the ML-DNN 
mentioned in Chapter 2 was effective for actual operation 
of production equipment. The test was conducted by the 
System Development Office, Digital Transformation 
Improvement Div., KYB Corporation. Specifically, 
operating time thresholds that can be easily controlled in 
the field were set and used to monitor any events that 
exceeded any of the thresholds. When such an event 
actually occurs, the ML-DNN is performed. If the result 
shows an equivalent abnormality, the ML-DNN should 
be able to detect abnormalities during actual operation.
�　The number of events exceeding the thresholds was 
visualized for easy identification using a business 
intelligence (BI) tool called Tableau, as shown in Fig. 7. 
The data was reviewed periodically. As a result, the 
phenomenon of an increasing number of abnormalities in 

Fig. 3　Frequency data and abnormality detection rate  
(before improvement)4)

Fig. 4　Typical examples of frequency peak patterns4)

Fig. 5　Abnormality detection procedure4)

Fig. 6　Frequency data and abnormality detection 
rate (after improvement)4)
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the "lateral release of the work clamp" action was 
observed twice in a given period. The fact that this 
abnormal phenomenon occurred twice during the period 
is also evident from the control chart shown in Fig. 8. 
The same data was used to run the ML-DNN as shown in 
Fig. 9 for comparison. This confirmed that the 
abnormality trend was identical between the two.
　The actual equipment was checked against the data. 
Locations associated with the "lateral release of the work 
clamp" action were examined to find any abnormalities. 
As a result, Abnormality 1 was found to be air leakage 
from the air tube (Photo 1) and Abnormality 2 was found 
to be deterioration of one of the air tubes (Photo 2). The 
defective parts were replaced. It was also confirmed that 
the abnormality data was eliminated after replacement.
We are preparing for commercialization in FY2024 or 
later of the abnormality detection for high-pressure 
pumps using both the spectral characteristics of their 
pressure data and an auto-encoder. We also plan to 
continue verification of effectiveness for vibration and 
acoustic data.

5. Conclusions
　This paper has introduced abnormality detection and 
prediction technologies for production equipment using 
DL data such as multi-labeled deep neural networks and 
auto-encoders. These technologies can be applied to 
cases where little abnormality data is available. Key 
elements in these cases include a signal processing 
technique used to extract characteristic values to be 
focused for abnormality detection. It is also important to 
identify abnormality factors of the equipment and discuss 
how their impacts appear. In this context, implementation 
of these technologies is equivalent to building a model of 
the target equipment and conducting failure diagnosis or 
prediction depending on how far the actual equipment is 
away from the model. These technologies are called 
system identification5) in the field of control engineering. 
The knowledge of system identification technology can 
also be applied to the construction of technology for the 
diagnosis of abnormalities in dynamic systems.
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Fig. 7　Number of abnormal events exceeding the threshold

Fig. 8　Abnormality detection graph using control chart

Fig. 9　Abnormality detection graph using ML-DNN

Photo 1　Abnormality 1 (air leakage)

Photo 2　Abnormality 2 (deteriorated tube)


