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Abstract
　The future trend of Artifi cial Intelligence （AI） 
includes the industrial application of combining AI 
with Computer Aided Engineering （CAE）. By in-
tegrating AI and CAE, several benefits emerge, 
such as the acquisition of data through CAE that 
would be impossible to obtain in the real world for 
training AI models, reducing CAE computation 
time by degenerating Finite Element Method 
（FEM） tasks for AI.
　Additionally, in recent years, the automotive in-
dustry has witnessed an increased adoption of 
Model-Based Development （MBD）, leading to col-
laborative development where CAE models re-
place physical prototypes between departments or 
companies.
　To facilitate MBD and enhance the performance 
prediction of our fl agship shock absorber products, 
we developed a technology that combines Machine 
Learing Model（ML model） with CAE. This allows 
us to predict damping force performance metrics 
rapidly and accurately. Furthermore, a system 
was developed to automate the operation and 
management of machine learning models.
　In this report, we provide a technical explana-
tion of the implementation of machine learning for 
shock absorber damping force calculations and the 
construction of an operational management plat-
form for machine learning models.

1 　Introduction

1. 1　Target Product
　This report introduces a Shock Absorber (SA) 
for automobiles shown in Fig. 1. SAs play the role 
of damping the vibration of the vehicle. They can 
extend or contract according to the bumps and 
dips of the road surface and changes in the 
position of the vehicle. Hydraulic fl uid is displaced 
from the SA cylinder according to the operating 
speed. The fl ow of the displaced fl uid is reduced 
by a small-area orifice or a laminated leaf valve, 
creating a pressure differential to provide a 
damping force. The SA performance is evaluated in 
terms of the damping force-velocity characteristics. 
The laminated leaf valve is a particularly 
important component for performance evaluation. 
It consists of a thin steel plate that is installed to 
vary the oil passage area  depending on the 
pressure during operation. By changing the 
lamination specifications (outer diameter, plate 
thickness, the number of leaves), the damping 
force is tuned to the vehicle.

Fig. 1　Shock absorber structure
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1. 2　KYB's CAE Initiative
　Since the introduction of Computer Aided 
Engineering (CAE) in 1968, KYB has introduced 
various performance prediction technologies as 
shown in Fig. 2 to support the development of 
products and technologies. There are two types of 
CAE. One is 1DCAENote 1), which develops product 
functions at the product planning stage (system 
simulation). The other is 3DCAENote 2), which 
studies product geometry in detail (FEMNote 3)). 
KYB has accumulated prediction technologies for 
both types. In 1985, we put into operation the 
CAE Standard Execution System1), which is KYB's 
original system for easy technical calculation. The 
system allows users to easily utilize advanced 
prediction technologies from anywhere by using 
standardized input, execution, and output methods 
on various applications for either 1DCAE or 
3DCAE. Approximately 2,000 programs are 
currently registered in the system.
　KYB established the basic theory of SA 
damping force simulation, which is the main 
subject of this report, in 1981. Since then, the 
company has addressed the calculation as 
mathematical 1DCAE to be calculated on the CAE 
Standard Execution System.

1. 3　Outline
　With the recent widespread use of Model-Based 
Development（MBDNote 4)）, it is necessary to 
develop products by jumping between 1DCAE 
and 3DCAE to run a cycle of studying both 
functions and geometry upstream in the product 
development stage. In addition, the need to 
circulate models instead of prototypes through 
internal departments and related companies has 
increased. In our initiative to address MBD, the 
technical challenges to be solved were as follows:
　[1] �In some cases, the coordination between the 

system study and geometry study was not 
well established. This was because the work 
of CAE specialists is divided into separate 
tasks due to the differences in modeling 

concept and skills between 1DCAE, which 
deals with simple and transparent models, 
and 3DCAE, which aims to reproduce actual 
machines more accurately.

　[2] �Geometry studies using 3DCAE tend to be 
expensive to analyze and take a significant 
amount of time to complete.

　[3] �Models to be circulated among related 
companies and internal departments must 
allow for high-speed computation while being 
highly detailed to represent actual products.

In order to solve these technical challenges and 
smoothly promote MBD, we needed to establish a 
technology that degenerates 3DCAE, which can 
handle detailed geometry, into a machine learning 
model (ML model) and implement it in 1DCAE 
(Fig. 3).

　In order to establish technology for predicting 
the SA damping force accurately and quickly, we 
have built a technology for implementing the 
machine learningNote 5) model, which was degenerated 
from an FEM model of the SA laminated leaf 
valve, into a 1DCAE simulation tool (the 1D-CAE 
Note 6)). Its outline is shown in Fig. 4.

Note 1�) A CAE field that predicts product performance 
through mathematical system simulation.

Note 2�) A CAE field that uses FEM to study product 
geometry in detail.

Note 3�) Finite Element Method is one of the numerical 
analysis methods that can be used to deal with 
complex geometry by dividing the geometry of 
the product into elements (mesh). 

Fig. 2　Example of analysis of automotive SA

Fig. 3　Technical challenges of MBD

Fig. 4　Technology building for laminated leaf valve
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Note 4�) A design and development methodology that 
uses model-based simulation.

Note 5�) A computer technology that learns regularities 
and patterns in data to determine the current 
state and predict the future.

Note 6�) A simulation tool for 1DCAE. The hyphen is 
used to distinguish the tool from the CAE domain.

２ 　FEM Models

　The FEM analysis of the laminated leaf valve, 
which is the target of this technology building, can 
be characterized as follows (Fig. 5):
　[1] �Allows evaluation of the deformation and 

stress of the laminated leaf valve during 
assembly (applied with an axial force due to 
screw tightening) and during operation 
(applied with a pressure due to hydraulic 
resistance of the orifice and other parts).

　[2] �Can take into account the initial deformation 
caused by the axial force due to screw 
tightening and the partial contacts inside the 
laminated leaf valve, which cannot be 
included in the theoretical calculation of the 
disc stiffness used to determine the SA 
damping force.

　[3] �Allows structural analysis not only with the 
microdeformation theory, but also with the 
large deformation theory.

　[4] �Due to its long computation time, the analysis 
has rarely been applied to the calculation of 
the SA damping force. Rather, it has been 
mainly used to study the geometry of parts 
around the laminated leaf valve.

３ 　Data Set Generation

　We continuously performed the FEM analysis of 
a portion of the SA design series by changing the 
lamination specifications (outer diameter, plate 
thickness, the number of leaves) and the applied 
pressure, creating data sets necessary for building 
an ML model (Table 1). These data sets can also 

be used to calculate complex laminated leaf valves, 
called "preload valves", as shown in Fig. 6. A 
preload valve is a type of laminated leaf valve 
with its leaves at different heights to have an 
initial deformation, generating a preload to provide 
a high damping force.
　For the continuous calculation, the FEM 
program codes were subjected to string processing 
by Python® to generate a program in advance 
with the lamination specifications (outer diameter, 
plate thickness, the number of leaves) of the 
laminated leaf valve randomly changed. KYB's 
standard CAE system was used for continuous 
automatic calculation 24 hours a day, seven days a 
week.

４ 　Building an ML Model

　After experimenting with the implementation of 
various machine learning algorithms, we were 
able to build an ML model that can infer the 
results of FEM analysis with high accuracy by 
using FLAML, a library in Python® Note 7) recently 
released by Microsoft Corporation. Fig. 7 shows 
the inference accuracy of the ML model for 
unknown data. The machine learning inference 
resu l t s  ( the  ver t i ca l  ax i s )  and the  FEM 
computation results (the horizontal axis) are 
plotted on a straight line with a slope of 1 (45 
degrees). This verifies that the machine learning 
provides highly accurate inference.

Fig. 5　FEM analysis of laminated leaf valve

Table 1　Training data sets

Outer diameter of 
laminated leaf valve

5 levels or more

Plate thickness of 
laminated leaf valve

4 levels or more

Number of leaves of 
laminated leaf valve

3 levels or more

Preload valve 2 levels (yes/no)
Applied pressure 21 conditions
Deformation theory Large deformation theory
Number of data sets 1,045,380

Fig. 6　Preload valve

Fig. 7　ML model inference accuracy
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　FLAML is AutoML that can automatically select 
decision tree Note 8) machine learning algorithms or 
hyperparameters (parameters set by the model 
creator to control algorithms before learning). By 
using FLAML, we finally decided to use the 
LightGBM algorithm. LightGBM, which is a 
decision tree algorithm characterized by lightness 
and high speed, has been widely used in machine 
learning competitions in recent years.

５ 　Implementing the ML Model in 1D-CAE

　Together with NewtonWorks Corporation, we 
researched how to implement the Python® ML 
model in 1D-CAE SimulationX®. As a result, we 
decided to use coupled analysis via communication, 
which is easy to implement. Fig. 8 shows how 
SimulationX® and Python® communicate with each 
other to send/receive coupled analysis data. For 
the purpose of verifying the effectiveness of the SA 
damping force simulation with the ML model 
mentioned in Chapter 6, Fig. 8 reflects communication 
between applications within the same personal 
computer. However, such a system is difficult to 
use for model circulation among related companies 
and internal departments. Finally, we introduced 
the cloud communication described in Section 7.4.

　It was decided to transfer the information of 
variables that do not change with time, such as 
the outer diameter, plate thickness, and number of 
leaves o f  the laminated lea f  va lve ,  f rom 
SimulationX® to Python® only once immediately 
after the start of the calculation, and to transfer 
the information of variables that change with time, 
such as the applied pressure, to Python® via 
telecommunication at each communication time 
step. Based on the information of variables from 
SimulationX®, Python® infers the deformation of 
the laminated leaf valve and sends the results 
back to SimulationX® via telecommunication.
　The computation for the coupled analysis by 
SimulationX® and Python® via telecommunication 
cannot be performed unless both tools are started 
to perform their own computation. In order to 
complete the computation by SimulationX® only, 
we created our own SimulationX® customized 
block shown in Fig. 9 to execute the Python® 
codes of the ML model in synchronization with 
the computation by SimulationX®. The customized 
block was created using the Modelica language Note 9) 
and can be characterized as follows;
　[1] Allows parameterization of ML models.
　[2] �Allows computation via telecommunication 

between SimulationX® and Python® (Fig. 8).
　[3] �Allows setting up the Python® virtual 

environment and Python® codes to be 
operated for calculation via telecommunication.

Note 7�) Python® is a trademark of Python Software 
Foundation.

Note 8�) A machine learning algorithm that has a tree 
structure in which data is conditionally branched. 
Non-linear relationships can be identified.

Note 9) A multi-domain language for physical modeling.

６ 　SA Damping Force Simulation

　We implemented the ML model built in Chapter 
4 in the SimulationX® customized block (Fig. 9) to 
verify the effect of the ML model on the accuracy 
of  predict ing the damping force -ve loc i ty 
characteristic, which is an SA performance 

Fig. 8　Data exchange between SimulationX® and 
Python®

Fig. 9　SimulationX® customized block
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i nd i ca t o r .  For  th i s  purpose ,  we  bu i l t  a 
SimulationX® model by linking the ML model with 
KYB's original hydraulic library in the Modelica 
language (Fig. 10). In this model, the pressure 
applied to the leaf valve calculated by the hydraulic 
library is used to calculate the deformation of the 
laminated leaf valve using the laminated leaf valve 
ML model. The resulting deformation is converted 
into an area of the hydraulic orifice and then 
returned to the hydraulic library.

　As an example of verifying the prediction accuracy 
of the damping force-velocity characteristics 
compared to the experiment, Fig. 11 shows the 
results for the preload valve shown in Fig. 6. 
These results prove that, compared with the 
conventional theoretical calculation, the calculation 
model with the built-in ML model can predict the 
damping force-velocity characteristics with high 
accuracy.

　By degenerating the FEM model for the 
laminated leaf valve to the ML model, the 
calculation time was significantly reduced from 93 
seconds (with 23 pressure conditions) to 3 seconds 
(with 1,000 pressure conditions, including the time 
for the SA damping force calculation process).

７ 　�Building an ML Model Operational 
Management Platform

7. 1　ML Model Operational Management System
　In the process of operational management of the 
ML model technically built in the previous 
chapters, the following three major problems 
became obvious:．
　[1] �Complexity of building the environment and 

concerns about technology leakage
　[2] �Too many man-hours for operat ional 

management of the ML model
　[3] �Difficulty in managing the quality of the ML 

model
The environment mentioned in [1] refers to the 
user environment for the ML model. In general, 
individuals need to build a Python® programming 
environment to run the ML model on their own 
PC. In addition to the ML model data, the Python® 
program codes must be provided. This raised 
concerns about technology leakage when 
circulating the model among related companies 
and other departments of KYB. In addition, the 
program codes contain third-party libraries, which, 
depending on the user's PC environment, may 
disable the availability of libraries from target 
versions. Partly because of the possibility of this 
problem, it seemed likely to be complex to build 
the environment, raising concerns about too much 
man-hour burden on model users. In terms of [2], 
the ML model will be continually managed even 
after the model has been completed. The accuracy 
of the ML model may gradually deteriorate over 
time due to changes in the environment and other 
factors. In particular, its prediction accuracy may 
decrease with changes in the way the laminated 
leaf valve is used (design trend). To solve this 
problem, a model retraining process would be 
needed to ensure stable operation of the ML 
model. However, such continuous retraining 
usually requires a lot of man-hours for the ML 
model manager. If this operational process is not 
included in the workflow, there was a concern 
about too many additional man-hours. In [3], it was 
feared that the quality management of the ML 
model would be difficult even if the model was 
updated by retraining. This is because the ML 
model management itself depends on individual 
users as long as the complexity of the model 
environment mentioned in problem [1] persists.
　To solve these problems, we internal ly 
developed an ML model operational management 
platform to realize MLOps Note 10) as a system that 
allows relevant users to share and use a controlled 

Fig. 10　SA damping force-velocity characteristics 
calculation model

Fig. 11　Damping force-velocity characteristics predic-
tion accuracy
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high-quality ML model . Fig. 12 shows the 
overview.
　The developed system can collectively manage 
all processes related to an ML model, including 
collecting, visualizing, and analyzing training data, 
as well as model training, accuracy checking, and 
developing AI services for SA damping force 
simulation by building an API system of the 
created model Note 11). This will greatly reduce the 
work of traditional ML model administrators. The 
system was built on the Amazon Web Services® 
cloud, which has advantages in functional 
extensibility and fault tolerance compared to the 
on-premises system Note 12). In addition, this system 
was developed by an internal cross-functional AI 
community2) that brings together people with deep 
knowledge of machine learning and system 
development. The time required to complete the 
PoCNote 13) was only one year.

Note 10�) An acronym for Machine Learning and 
Operations. It refers to an approach or concept 
for improving efficiency in the development, 
analysis, and operation of ML models.

Note 11�) A scheme (interface) that connects different 
systems, including software and programs, with 

each other to al low users to share their 
functions.

Note 12�) A type of system deployment where an 
organization owns and operates the servers and 
networking equipment needed to build the 
infrastructure.

Note 13�) An acronym for Proof of Concept. It refers to a 
series of verification tasks to determine the 
feasibility of an idea or technology used to 
implement a product or service.

7. 2　�Data Collection, Management, and 
Visualization

　This system can be used to automate the series 
of processes from training data generation to 
uploading with a script, allowing the operator to 
perform the work with minimal operation. The 
FEM analysis data, which is the basis of the 
training data, is generated on the calculation 
server in the cloud managed by the CAE 
department with a training data generation script 
when KYB's relevant CAE expert deems it 
necessary to retrain the model. With this script, 
the FEM analysis data is processed to be used as 
training data for the ML model , and then 
automatically transferred to Amazon S3 Note 14) of 

Fig. 12　Overview of the ML model operational management platform
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this system.
　The transferred data can be visualized using a 
BINote 15) tool Tableau®Note 16)(Fig. 13). In KYB, a 
company-wide data analysis environment using 
Tableau® is available, which enhances compatibility 
with the BI tool used in the company. This has 
enabled internal ML model managers and data 
scientists to quickly analyze data.

Note 14�) Cloud storage that is highly fault tolerant and 
can store and protect data regardless of its type 
or capacity.

Note 15�) Business Intelligence: A technology or approach 
that collects and analyzes necessary information 
from large amounts of accumulated data to be 
used for business management and operations.

Note 16�) Tableau® is a BI tool and a registered trademark 
of Salesforce, Inc.

7. 3　Learning Pipelines
　This system includes learning pipelines for ML 
model developers to develop an ML model with a 
low number of man-hours. Amazon SageMaker Note 

17) features are used to integrate the series of 
processes including data preprocessing Note 18), 
model training, model accuracy verification, and 
inference endpoint Note 19) into an automated 
workflow.
　Using Amazon SageMaker allows the workflow 
to run on a virtual computing environment with 
the necessary specifications for processing. This 
eliminates the need to deploy physical computing 
servers with excessive specifications. Instead, the 
optimal processing resources can be quickly 
deployed to achieve cost-optimized processing.
　The ML model is designed to be divided into 
two or more models according to specif ic 
computation conditions. This makes it easy to 
change the model design, thereby achieving 
flexible development that is easily adaptable to 
changes in demand. This model design will 

hopefully also help to identify data that has 
deteriorated the prediction accuracy, which could 
be caused by model retraining.
　Thus, ML model developers can initiate the 
pipeline to train the target model by simply running 
a single command line that specifies the conditions 
of an ML model. In addition, this learning pipeline 
supports both the creation of a new ML model and 
its updating through re-learning. All processes 
related to model development with a view to long-
term operation have been integrated into a single 
pipeline. On the other hand, the pipeline is designed 
to automatically select the workflow of creating a 
new ML model or the retraining workflow from the 
input to the pipeline. In addition, basic parameters 
related to model development have been given 
optimal values that have been previously collected, 
eliminating the cumbersome item setting that is 
otherwise necessary each time the pipeline is run. 
With these features, we have successfully built a 
pipeline that achieves the reduction of man-hours of 
ML model developers while increasing the 
reproducibility of model training.
　Once the ML model training is completed, the 
generated learning model is automatically stored 
in Amazon S3 .  The resul ts  o f  the model 
performance evaluation are reported to the ML 
model administrators via the communication tool 
used in the company (Fig. 14).

　On the report screen, users can view the RMSE 
Note 20) of the test results and the feature set 
importanceNote 21) of the generated model . In 
addition, for an ML model updated by relearning, 
a comparison with the results of the previous 
model is automatically displayed. In this way, the 
report screen is designed so that users can see 
the learning results at a glance.
　Details of the ML model can also be viewed on 

Fig. 13　Training data analysis screens

Fig. 14　ML model evaluation report screen
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Amazon SageMaker. ML model developers can 
use the Amazon SageMaker Experiments feature 
Note 22) to visualize changes in the accuracy of 
the model being trained, changes in the optimal 
values of various parameters required by the 
learning algorithm, and the final model accuracy, 
and to compare the model's performance to that of 
any previous model (Fig. 15).

Note 17�) A cloud-based service that provides an 
implementation environment for rapidly 
developing and deploying ML models.

Note 18�) A processing to integrate training data 
generated after data processing with a training 
data generation script.

Note 19�) An interface that allows users to use ML 
models externally.

Note 20�) The Root Mean Squared Error refers to the 
function used to determine the square root of 
the mean of the squares of the prediction errors. 
One of the general evaluation functions of ML 
models that focuses on regression issues.

Note 21�) A metric that represents how much each 
feature set of the training data contributes to 
improving model accuracy.

Note 22�) One of the Amazon SageMaker features that 
can track the learning record of the model.

7. 4　Deployment as an AI Service
　The ML model generated by learning pipelines 
is automatically deployed as an inference endpoint. 
End users can use the ML model in real time.
　To mainly enable internal SA developers to 
calculate SA damping force using machine 
learning directly from within their familiar 
SimulationX® tool, we have developed a custom 

library that can be built into SimulationX®. This 
custom library can be imported into the CAE tool 
to communicate with the inference endpoint in the 
cloud via WebAPI Note 23).
　WebAPI is commonly used for back-end 
processing Note 24) of Web sites and other applications 
and allows the user to keep private certain 
processing, including model data and program code 
e lements .  Us ing WebAPI enab les  d i rec t 
communication with inference endpoints from the 
1D-CAE. The ML model inference results obtained 
through communication are reflected in the 
1D-CAE. High accuracy SA damping force 
simulation is now available.
　SA damping force simulation with this system 
involves communication via the Internet for 
inference processing with the ML model in the 
cloud. Therefore, we designed an original 
communication algorithm to optimize the number 
of communication times with the ML model to 
reduce the simulation time. As a result of applying 
the algorithm to the SA damping force simulation 
using machine learning, the communication time 
to determine the damping force -ve loc i ty 
characteristics shown in Fig. 11 was successfully 
reduced to about 1/10 of the time taken without 
the algorithm. End users can now use ML models 
to quickly and accurately calculate the SA 
damping force with a simple procedure without 
the need to individually build a machine learning 
environment.
　The developed ML model is controlled for 
version by the system. Even if the system trains 
and updates the ML model to a new version, the 
previous version remains available (Fig. 16).

Fig. 15　Visualized changes in learning accuracy of 
ML model

Fig. 16　Illustration of ML model version control
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　This version control ensures the reproducibility 
of the results of the SA damping force simulation 
using machine learning.
　The custom library can be output after 
conversion to a data format according to the FMI 
standard Note 25), providing compatibility with other 
types of CAE tools that support the FMI standard. 
In particular, all models created in SimulationX®, 
including the original custom library, can be 
converted to royalty-free FMU Note 26). This means 
that this system can also be used by external SA 
developers using other types of CAE tools. The 
system also has a user account management 
function mainly for external end users to expand 
the range of users of the service. At the same 
time, we are considering providing a high-security 
API. External end users who have registered in 
advance can log in to their own user account from 
the user login screen provided by the system. 
After successful login, they can receive an 
authentication token (Fig. 17).

　External end users can enter the authentication 
token via the CAE tool by importing the pre-
delivered FMU into the tool. The FMU only allows 
communication using the authentication token. 
Communication with the ML model cannot be 
established unless the access is allowed by the 
system. This feature allows all end users, whether 
internal or external, to access the SA damping 
force simulation using the ML model (Fig. 18).

　To reduce the risk of invalid use of the 
authentication token, the system is configured to 
disable the token itself after a certain period of 
time has elapsed since the user's login. Even if the 
authentication token is leaked externally, any 
request to the API with a token that has been 
disabled after a certain period of time will be 
rejected by the system. The system continuously 
keeps an access history and has a function to 
warn the system administrator about any 
suspicious unauthorized access.

Note 23) An API available on the Internet.
Note 24�) Processing in the server zone that is invisible 

to users.
Note 25�) Functional Mock-Up Interface: An open standard 

for exchanging and connect ing dynamic 
simulation models between standardized tools of 
different types.

Note 26�) Functional Mockup Unit: An execution module 
based on the FMI. The FMU can keep models 
private and use them regardless of the type of 
CAE tool.

7. 5　Monitoring the Quality of Training Data
　To verify the accuracy of the ML model of this 
system, it is necessary to check the inference 
results of the model with the actual FEM 
calculation results. When specification information 
is input by an end user, the system outputs the 
prediction results of the ML model based on the 
inference endpoints. Obtaining accurate FEM 
calculated values for the results requires time and 
cost, so it is difficult to verify the accuracy of an 
ML model in operation. For the purpose of this 
system, we then focused on the quality of the 
training data that affects the model accuracy.
　The SA specification information entered to use 
the AI service is recorded in the system as the 
usage history of the ML model. The system can 
compare the distribution of data used to train the 
model with the distribution of data actually used. 

Fig. 17　�External user login screen and authentication 
token issuance screen

Fig. 18　API request with temporary authentication 
token screen
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Statistics are automatically computed and 
periodically compared for verifi cation. The results 
of the comparison are automatically reported to 
the ML model administrator via internal 
communication tools, so that they can be used to 
consider retraining the model (Fig. 19).

8 　Concluding Remarks

　By degenerating the detailed FEM model, which 
requires long computation time, into the ML 

model, we built the computational foundation to be 
implemented in 1D-CAE, which requires only 
short computation time despite its high accuracy. 
We a lso  bu i l t  the ML model  operat iona l 
management platform to enable staff  to share the 
controlled high-quality ML model.
　These technologies we have developed will help 
solve all MBD technical issues shown in Fig. 3 
(seamlessly proceeding from 1D system study to 
3D study, more effi  cient 3D geometry study, and 
model circulation among related companies and 
internal departments). We will actively apply the 
technologies to model development both inside 
and outside KYB, trying to maximize the 
eff ectiveness of the MBD.
　Finally, we would like to take this opportunity 
to express our sincere gratitude to the CAE 
software vendors and cloud vendors, and staff  of 
the related sections of KYB, who have cooperated 
in this project.
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